Seeing is Believing: Interpreting Behavioral Changes in Audio
Deepfake Detectors Arising from Data Augmentation

Boo Fullwood
boo@gatech.edu
Georgia Institute of Technology
Atlanta, Georgia, USA

ACM Reference Format:

Boo Fullwood and Fabian Monrose. 2025. Seeing is Believing: Interpreting
Behavioral Changes in Audio Deepfake Detectors Arising from Data Aug-
mentation. In Proceedings of the 2025 Workshop on Artificial Intelligence
and Security (AlSec °25), October 13—17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3733799.3762979

Today, creating audio deepfakes is easier than ever, and the prolifer-
ation of high-fidelity text-to-speech and voice conversion tools has
underscored the need for technologies that can quickly differentiate
between real and spoofed audio. In lieu of such techniques, spoofed
audio poses a serious epistemic threat to public trust in audio validity.
The push for more competent detectors to combat this threat has
led to the adoption of increasingly powerful detector architectures
and the development of novel data augmentation techniques to better
adapt to out-of-distribution data.

However, these architectures generally lack the interpretability
of simpler models, preventing researchers and end-users from fully
understanding model behavior and the impact of augmentation. To
address this, we demonstrate an occlusion-based explainability analy-
sis technique, enabling the identification of specific changes in model
behavior induced by data augmentation. We show that these differ-
ences can be identified even between highly similar augmentations
and observe that common augmentation techniques, namely random
input masking, produce counter-intuitive and potentially undesirable
behavioral characteristics and may fail to improve model robust-
ness. We further demonstrate the utility of behavior visualization by
identifying undesirable behavior in response to encoded audio and
developing a corresponding augmentation that recovers a majority
(51.6%) of the lost performance. The developed augmentation shows
higher generalization across other classes of distorted audio on our
model than the “general purpose” augmentations. Our explainability
technique is enabled by the use of a spectrogram-based detector. We
specifically select the Audio Spectrogram Transformer, which has
seen limited use in the field compared to similar, less explainable
alternatives. Alongside improved explainability, AST shows perfor-
mance matching or exceeding the existing state-of-the-art (Equal
Error Rate 0.001) on large deepfake datasets.

1 INTRODUCTION

The widespread deployment and adoption of generative Al systems
offer significant benefits and pose significant risks to society. On
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the latter, fake content is now everywhere. Creating realistic syn-
thesized audio (colloquially referred to as audio deepfakes) [36] no
longer requires expert knowledge or access to large training datasets,
with some systems claiming to offer “zero-shot cross-lingual voice
cloning”, free of charge, in minutes [52]. Voice cloning tools like
these are not only readily available [16], but also easy to use [43],
and their ubiquity is fueling an unprecedented wave of malicious
incidents. While some of the more damaging incidents have been
reported in the popular press (e.g., fraudsters cloning the voice of a
company director to dupe a bank manager into authorizing transfers
of $35 million)l, Hutiri et al. [25] recently detailed over 35 incidents
where specific harms (including coercion, deception, and laundering)
were traced back to speech generation tasks. The startling realism of-
fered by these tools has raised concerns about the looming challenges
to democracy and national security, leading to executive orders [5]
in the United States on the trustworthy development and use of Arti-
ficial Intelligence, and the adoption of laws governing the creation
and use of deepfakes [17] worldwide.

Audio deepfakes often fool listeners because humans rely more on
visual information than any other form of sensory information [51],
making it difficult to notice indicators of forgery in isolation. In the
absence of widespread deployment of automated detectors in pop-
ular online platforms, observers are left to make judgments about
whether the information they encounter is real or fake based on men-
tal shortcuts for establishing veracity [24, 44] — but, all too often,
they cannot do this well. For instance, with video deepfakes, visual
inconsistencies (e.g., incorrect lip-syncing or unnatural facial expres-
sions) [16] are commonly relied upon as cues for determining content
veracity, but similar perceptual cues [12, 34] in audio-only media are
less clear [33, 44]. Indeed, several studies [33, 68] have shown that
humans are highly susceptible to deceptive audio and that we are
approaching the point where our perceptual capabilities no longer
offer an effective defense against Al-generated forgeries. Today, many
scholars consider deepfakes to be epistemically harmful [22, 23] be-
cause they undermine trust in our senses, inevitably leading people
down a path of insulating themselves against the threat of deception
by restricting the channels where they access information.

The expectation from the security community is that Audio Deep-
fake Detection (ADD) technologies will address this impending
threat by picking up on subtle artifacts of forgery that are impercep-
tible, or at least not typically perceived, by human observers. Along
those lines, recent research [1, 72] has demonstrated the effectiveness
of a variety of detector architectures on closed-world detection tasks.
These detectors report near-perfect classification [60, 67] of spoofed
audio within a single target dataset. However, because real-world

1See “Fraudsters Clone Company Director’s Voice in $3.5 Million Heist, Police Find,
Forbes Magazine, Oct 14, 2021.
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deepfakes can span a breadth of generator architectures, spoof types,
and acquisition environments [72], the same detectors have been
shown to perform poorly when exposed to new information without
retraining [15, 46].

In response, data augmentation is widely used [29, 30, 40, 49]
to help improve performance on out-of-distribution data, typically
by perturbing training inputs. While several of these augmentations
are well justified in theory, oftentimes, the actual impact on model
behavior is not systematically investigated because doing so requires
a model that allows for the detailed localization of attention or other-
wise determining regions of importance in the input sample. Ideally,
a model will allow localization of model attention both in terms of
time (what points during the audio are important?) and frequency
(at those points, what frequency ranges are important?). Unfortu-
nately, many detectors operate on raw audio [60] or on intermediate
representations [61] that only permit interpretability along the time
axis, making it difficult to identify what characteristics [58] of the
audio at the identified time points are important for classification.

To address those needs, this paper presents a reliable visualization
of model behavior, projected onto a spectrogram [54] representation
of the input audio, along with a novel quantification of model atten-
tion distribution. This approach is enabled by the Audio Spectrogram
Transformer (AST), which achieves state-of-the-art performance
while maintaining the explainability of both time and frequency
features, allowing for detailed localization of model attention.

Our contributions include:

o We demonstrate the visualization and identification of changes
in model behavior in response to several common augmenta-
tion techniques [49] (e.g., time masking, frequency masking),
which is not possible with competing architectures.

e We showcase the development of a bespoke augmentation
informed by behavior visualization, dramatically improving
performance on audio encoded with high-quality audio codecs
(G.711, OPUS), and attaining modest performance gains on
other common classes of audio distortion.

o The application of the AST architecture to the domain of au-
dio deepfake detection and evaluation on three large datasets,
including spoofed audio from 27 high-fidelity generators and
collections of real-world deepfakes, demonstrating state-of-
the-art performance (an equal error rate of 0.001) matching or
exceeding widely adopted detectors (Wav2Vec2.0 [2], Whis-
per [53], RawNet2 [60]).

The remainder of the paper is structured as follows. Section 2
offers essential background information, including key terminology
and concepts fundamental to our approach and analyses. Section
3 reviews related work, followed by a detailed explanation of our
approach for behavioral visualization in Section 4. In Section 5, we
investigate the behavioral impact of common spectrogram augmenta-
tions. In Section 6, we investigate how interpretability can be used to
develop and validate novel augmentations and evaluate the developed
augmentations against several important types of audio distortion.
and the description of our experimental setup in Section 7. Section 7
discusses our performance evaluations and results under a standard-
ized setting. We discuss limitations and future work in Section § and
conclude in Section 9.
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2 RELEVANT BACKGROUND

0 O

Figure 1: A spectrogram with quasi-periodic signal (1), aperiodic signal
( and silence @ highlighted. Note the logarithmic scale.

The spectrogram representation of speech allows for changes
in frequency properties of the speech signal to be observed over
time. Traditionally, a spectrogram is created by separating the source
signal into discrete time windows, performing a Fourier transform
on each window, and concatenating the resulting transformations to
produce a time-domain representation. The windowing process is
necessary given that a typical speech signal is not stationary, that is,
the intensity of the different frequency components are expected to
vary over the duration of the sample. However, most speech signals
are approximately stationary over a short duration.

For speech signals, the frequency scale is often converted to a Mel-
scale [62], a logarithmic scale corresponding to human-perceived
frequency distances, such that a doubling in Mel frequency corre-
sponds to a doubling in perceived frequency. This accounts for the
reduction in perceived frequency distance at higher frequencies, e.g.
a change from 400Hz to 800Hz is perceived to be larger than a change
from 3600Hz to 4000Hz.

Broadly, speech signals can be classified as voiced (active speech
when the vocal cords are vibrating), unvoiced (active speech with
no vocal chord vibration), and silent. An example Mel-spectrogram
is shown in Figure 1, with highlighted examples of characteristics
of voiced and unvoiced speech. In this paper, we rely heavily on
the spectrogram representation for modeling and visualizing model
attention. We refer interested readers to the seminal textbook by
Reetz and Jongman [54] on acoustic production and perception.

3 RELATED WORK

Audio deepfake detection is an active research topic [7, 30, 38, 40,
46, 58, 60] with numerous surveys [1, 31, 37, 72] dedicated to the
subject alone. Yi et al. [72], for example, provides a comprehensive
look at differences across types of deepfake audio, widely used fea-
tures, datasets, and evaluations of state-of-the-art architectures. As
might be expected, the application of transformer architectures to
deepfake detection is not new. In particular, in the domain of audio
deepfakes, the Wav2Vec2.0 architecture [2] achieved strong classi-
fication performance (i.e., equal error rate of < 0.04) [38, 61] on a
popular challenge dataset. Our use of an Audio Spectrogram Trans-
former for the problem of deepfake detection achieves performance
on par with, or exceeding, previous approaches, and more impor-
tantly, operates on a more interpretable intermediate representation.
Existing applications of AST to audio deepfake detection focus on al-
ternative training paradigms, namely online/continuous learning [35]
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and contrastive learning [20], and neglect the explainability utility
of the model.

To improve generalizability [46], architecture selection along with
data augmentation techniques [38, 61, 65] are commonly employed
to boost model performance on both intra-dataset evaluations and out-
of-distribution data. These approaches employ global noise addition
[38, 61], feature masking/warping [49], encoding and compression
of the source audio [38], and ablation-based entropy addition [65].
However, unlike the direction we take, these solutions only evaluate
augmentations in terms of the change in model detection perfor-
mance. While proposed augmentations are often offered alongside
reasonable assumptions of their impact on model behavior, this im-
pact is not validated, and a performative augmentation is assumed
to be working as designed. We evaluate all augmentations both on
performance and on validated behavior.

Alongside augmentation, recent work on model explainability [3,
6, 73] has sought to offer insights into discriminatory features for
audio deepfake detection. However, the focus has been on analyzing
the behavior of static models. We expand this analysis by show-
ing changes in behavior as a result of augmentation and extend the
analysis of model explanations beyond basic region-feature corre-
spondence.

Recently, Maltby et al. [40] observed that spectral differences
between real and spoofed speech were increased in high-frequency
regions, and showed that increasing the intensity of spectral fea-
tures in these regions can improve detector performance. Unfortu-
nately, as we show later, these are the same regions that are less
likely to be preserved through normal audio transformations, like
transmission over VoIP. Likewise, Kawa et al. [30] show that the
performance of spectrogram-based detectors improved when using
spectrograms generated by the Whisper [53] feature encoder. That
encoder uses uneven, learned frequency bin intervals to optimize
classification performance on the Whisper transformer architecture.
While it is conceivable that incorporating Whisper spectrograms into
our framework could be beneficial, these adjusted spectrograms are
incompatible with the pretrained AST features.

Lastly, given the current interest in deepfakes, it is not surprising
that a number of adversarial attacks against audio deepfake detectors
and speaker verification systems [8, 29, 66] have emerged. Kassis
and Hengartner [29], Chen et al. [8], and Wang et al. [66] present
optimization-based adversarial attacks and show that these attacks
can circumvent most or all tested speaker verification systems. All of
these attacks require the ability to repeatedly test adversarial samples
against the detector in question, but can produce distortion-minimal
modifications to the audio to produce misclassifications. In this paper,
we focus on transforms that are likely to be applied in the general
course of recording, storage, and transmission, which are likely to
be encountered by all deepfakes. However, for completeness, we
demonstrate that a black box adversarial attack [9] remains effective
against the augmented model, though the number of optimization
steps needed to produce satisfactory adversarial examples increases
substantially. Further details are given in Appendix 10.2.

4 APPROACH

Our approach for empowering model designers with the informa-
tion needed to understand behavioral changes introduced by data
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augmentation strategies takes advantage of the Audio Spectrogram
Transformer (AST) [21] that was originally designed for the task
of general audio event classification (e.g., distinguishing between
speech commands, environmental sounds, music, animal sounds,
etc.). The spectrogram representation used by AST is a natural choice
for audio classification as it preserves both temporal and frequency
features. More importantly, this architecture allows for easy visualiza-
tion of model attention compared to convolutional feature extractors
used by other transformer models such as Wav2Vec [2]. Convolu-
tional feature extractors produce an intermediate representation that
is not visually related to any physical qualities of the source audio,
complicating any visualization of model attention projected onto
them. This additional interpretability is independent of the detection
capabilities of the model.

Raw Audio

Normalize audio and
generate spectrogram

o

@ Audio Spectrogram

Transformer

0

Real Fake

Figure 2: Model pipeline during standard detection tasks. Steps (D) and
) preprocess audio and produce the input Mel spectrogram. The fine-
tuned AST model performs inference in step 3) and reports the predicted
class (step @) along with confidence scores for each class.

For audio deepfake detection we use a traditional pipeline among
transformer architectures, as shown in Figure 2. In step (D, the input
audio is normalized to match the sample rate and amplitude of AST’s
pretraining data to ensure compatibility with pretrained features. The
normalized audio is then converted to a Mel-spectrogram (in step (2)).
Generated spectrograms are padded or truncated to a length of 1024
time bins, corresponding to an audio length of about 10s. The internal
Vision Transformer (ViT) [13] model (step ®) splits the spectrogram
into smaller patches that are then flattened and dimensionally reduced
through linear projection. The resulting embeddings are combined
with positional tokens to encode each patch’s location within the
larger spectrogram. The embeddings then pass through a standard
transformer encoder [63] architecture that computes the attention
between each embedding and all other embeddings. The attention
maps that govern this process are the primary trainable parameters
of the encoder architecture. The attention values are then summed
with the original embedding, and the resulting feature vectors are
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passed to a dense classifier. The model outputs classifications (step
®) as a confidence probability for each class.
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Figure 3: Model pipeline during behavioral analysis. Step (1) encom-
passes preprocessing and spectrogram generation. Each spectrogram
is repeatedly occluded (step 2)) and then run through the detection
pipeline for the base model and the model trained on augmented data
(step ). The confidences for the occluded spectrograms are aggregated
into heatmaps (step (@) and then compared to find behavioral changes

(step 3).

«—

When performing behavioral analysis, we incorporate several
steps that allow localization of model attention, as shown in Figure 3.
The initial spectrogram is generated in the same way as for normal
inference (step (1). A sliding window is then used to mask out small
regions of the spectrogram (shown as a black box in step (2)). Each oc-
cluded spectrogram is then classified by both the base model and the
data-augmented model (step (3)) and the change in model confidence
(relative to the original spectrogram) is recorded. The confidence
differential is mapped onto the occluded region of the spectrogram,
producing a heatmap (step (@) of attention for each model. These
heatmaps are then compared (step (5)) across aggregated groups
to identify changes in behavior induced by the augmentation. We
provide a detailed discussion of the visualization and comparison
processes in Section 5. Additionally, as the relevance of the visualiza-
tions and statistics produced by our approach are partially dependent
on the model’s classification performance to ensure that changes in
model predictions align well with the underlying data. We address
the performance capabilities of AST in Section 7.

It is important to note that AST is pretrained for audio classifi-
cation tasks from a large dataset, called AudioSet, containing 2.1
million audio samples across 527 classes. Of these, 1 million sam-
ples contain speech. Pretraining allows high-parameter models to
be used without access to the large datasets needed to train them
from a random initialization. Leveraging this pretrained model, how-
ever, requires that parameter differences between fine-tuning data
and pretraining data be minimized. Thus, all data are resampled to a

Boo Fullwood and Fabian Monrose

16000Hz sampling rate and normalized to the same mean/variance
as the AudioSet pretraining data.

S MODEL AUGMENTATION AND
VISUALIZATION OF MODEL BEHAVIOR

A seminal work in the area of augmentation techniques for automatic
speech recognition is that of Park et al. [49]. In that work, three aug-
mentation techniques are suggested, namely time masking, frequency
masking, and time warping. Time and frequency masking are con-
ceptually simple, removing information in a random range along the
specified axis (time or frequency) of the spectrogram. Time warping
dilates or contracts the spectrogram along the time axis about a ran-
domly selected point. The transform maintains the overall dimensions
of the spectrogram but alters the relative scale of the features. The
augmentations were initially developed to improve automatic speech
recognition on two datasets, LibriSpeech 960H [48] and Switch-
board 300H [19]. The two augmentation policies for LibriSpeech are
denoted as LibriSpeech Basic (LB) and LibriSpeech Double (LD),
with LD masking twice as many segments as LB. The Switchboard
augmentations, Switchboard Mild (SM) and Switchboard Strong
(SS) both mask two frequency and two time segments, but vary
in the width of the masked frequency segments with SS allowing
larger masked regions. We do not implement time warping as Park
et al. [49] concluded that the performance improvement associated
with time warping was small relative to the other augmentations. In
fact, models we trained with warped spectrograms showed subpar
performance compared to other policies. The parameters for these
augmentations are shown in Table 1 and correspond to the policies
recommended in the original paper.

Policy mgp T P mr

None 0o - 0 -
LibriSpeech Basic (LB) 27 1 100 1.0
LibriSpeech Double (LD) 27 2 100 1.0
Switchboard Mild (SM) 15 2 70 0.2
Switchboard Strong (SS) 27 2 70 02 2

Table 1: Parameters for SpecAugment augmentations, controlling the
count (mp, mr) and width (F, T) for time and frequency masks, resp.
The parameter p sets a limit on the width of time masking segments
proportional to the length of the audio sample.

NN =

The parameters m and mp determine the number of masked
sections for time and frequency, respectively. Similarly, the width
of each masked section is selected uniformly from the range [0, F)
and [0, T). Time masking has a unique parameter p which caps the
maximum width of a masked time section to p - tyax Where tmax
is the number of time steps in the spectrogram. Thus, for a policy
with a p value of 0.2, no masked time segment can be wider than
20% of the total spectrogram duration. This prevents over-masking
of short-duration samples.

5.1 Visualizing Model Behavior

The premise behind occlusion-based analysis is simple: if a region of
the input is important to the model’s classification process, removing
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Figure 4: Diagram of Explainability Pipeline. The Mel Spectrogram (D
is repeatedly occluded 2) to generate an importance heatmap (3. This
heatmap is thresholded and segmented (@) to identify separate islands of
high attention (5. Island statistics and distribution (6 are computed and
compared between models.

(occluding) the information in that region should reduce the model’s
prediction confidence. This reduction in confidence is then assumed
to be proportional to the importance of the region. By systematically
occluding all regions of the input, we produce a map of input impor-
tance. This process is shown in Figure 4 (steps () - (3). This method
of visualization does require care in the selection of parameters to
ensure that the results are both robust and meaningful.

First, the size of each occluded area must be selected to provide a
balance between heatmap resolution (smaller window is desirable),
confidence change magnitude (larger window is desirable), and com-
putational cost (larger window is desirable). We select a window
of 21x21, primarily driven by the desired change in prediction con-
fidence. Smaller windows caused minimal impact, indicating that
the window was not fully occluding features of interest. Second, we
select a baseline value (that is, the value with which occluded regions
are replaced) of -1.27..., which corresponds to minimal spectral en-
ergy in our normalized spectrograms. The de facto value of 0 would
instead be interpreted as average spectral energy, which we found
induced spurious attention in silence regions where it was interpreted
as new information.

We evaluated several alternatives to occlusion, including Grad-
CAM [57], Transformer Input Sampling (TIS) [14], and LIME [56].
We found that the gradient-based techniques (Grad-CAM, TIS) worked
poorly in the pretraining/fine-tuning ecosystem as the transformer
weights that are used by these methods are mostly stationary during
the fine-tuning process, and are therefore mostly determined by the
original pretraining. While this is a desirable characteristic for apply-
ing large models to small datasets, these techniques fail to capture
the domain-specific learning that happens predominantly in the final
classification head. LIME, which is also occlusion-based, segments
the input image prior to occlusion, and occludes each segmented
region. The default quick shift segmentation did not produce mean-
ingful regions when applied to spectrogram images (as opposed to
traditional, pictorial images), and spectrogram-specific segmenta-
tion approaches resulted in coarse segmentations, which impacted
the usability of the resulting heatmaps. Finally, our approach avoids
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recent concerns over complications with interpreting explanations
generated by attention rollout and token masking approaches [27, 69]
and ensures that the explanations are as interpretable as is possible.

5.2 Identifying Changes in Behavior

Given a base model and a model trained on augmented data, we wish
to identify shifts in model behavior when given the same inputs. By
applying the occlusion method to each model and input, we produce
pairs of attention heatmaps that highlight regions of importance for
each model. While comparing single heatmaps can be illustrative, it
is necessary to aggregate many heatmaps to identify larger trends in
model behavior.

To identify changes in the overall distribution of attention, we first
identify the number and size of regions of high attention using an
island-finding algorithm as shown in Figure 4. While this is not a
new method of region mapping, its application in this space is unique
and enables robust aggregation of behavior patterns across samples.
Each heatmap is normalized between 0 and 1 and then thresholded
such that areas of high attention are preserved and all other regions
are set to 0 (Step (@). We define an island as a contiguous region
of non-zero attention in the heatmap. We iterate over each point in
the heatmap and initiate a breadth-first search from each unvisited,
non-zero point. The breadth-first search aggregates all surrounding
non-zero points, returning a list of points belonging to the current
island (Step (®).

When comparing heatmaps, we can then look at both the total
count of islands and the average area of islands for each model (Step
(©®). Together, these provide a good measure of attention uniformity.
We apply either a Student’s t-test or a Welch’s t-test as appropriate
based on population variance to determine whether there is a signifi-
cant difference in the distribution of attention regions between the
base model and each data-augmented model. We use a threshold of
p < 0.05 for each T-test.

In addition to the count and area of islands in a heatmap, we
compute the centroid of each island and compare the distribution
of islands along the frequency axis (Step (6)). This is motivated by
two key characteristics of speech in general, and deepfake speech
in particular. First, lower frequency components of speech are more
important for intelligibility [54] and tolerate less distortion before per-
ceived speech quality is impacted. As such, many encoding schemes,
including the G.711 codec discussed in Section 6, do not preserve
high-frequency information, instead prioritizing maintaining as much
low-frequency information as possible for a given bandwidth. There-
fore, a robust detector must necessarily be able to operate in the
absence of high-frequency components. Secondly, Maltby et al. [40]
determined that differences between real and deepfake speech are
greater in high-frequency regions. This introduces a conflicting de-
sire with our first point: low-frequency attention may be more robust
against manipulation, but high-frequency attention may capture more
usable features for classification.

5.3 Results

The statistics for the distribution of attention are shown in Table 2.
We can see that all augmentations induced significant changes in
model behavior, as indicated by the diverging distribution of attention
islands. Counterintuitively, the SpecAugment-derived augmentations
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Augmentation Island Count Island Area

None 4.66 23.24
LB 5.44 44.95
LD 3.83 17.86
SM 6.38 72.26
SS 18.72

Table 2: Island finding statistics for each augmentation, and hypothesis
test results compared to baseline model. Count indicates the number of
discrete islands, while area indicates the average area of islands. Non-
statistically different values are grayed out. The baseline (unaugmented)
values are highlighted in yellow.
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0.035 3 Base
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=3 SALD
= SASM
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Prob. Density

0.015 A
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400 1000 2000 4000 8000
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Figure 5: Probability distribution function of islands over the frequency
axis for each augmentation. The distribution is calculated by computing
the centroid of each island, and then computing a histogram of the fre-
quency coordinate of each centroid. The PDF is then calculated using a
kernel density estimator.

do not produce similar changes in behavior. Given that these augmen-
tations apply the same type of input perturbation and vary only in the
scale of the perturbations, we would expect that the induced behavior
change would be similar in type if not in magnitude. However, we see
that while both the LD and SS policies produced similar reductions
in average island size, the LB and SM policies resulted in a dramatic
increase in island size. Similarly, the LB and SM policies produced
a greater number of high-attention regions which, when combined
with the larger average island size, indicates a significantly more
broad distribution of attention compared to the other augmentation
types. This behavior is more in line with the expected impact of
masking augmentations which punish dependence on small artifacts
or highly specific regions. The overall reduction in attention area as-
sociated with the other SpecAugment policies likely contradicts the
behavioral change expected by most users. Based on these statistics,
the SpecAugment augmentations broadly sort into two groups based
on behavior (LD and SS reducing attention diffusion and LB and
SM increasing diffusion). However, these groups do not fall along
either the original dataset separation (LibriSpeech vs. Switchboard)
or parameter differences (LB having only one masked segment per
axis) as might be expected. This contradicts the intuitive assumption
that similarity in augmentation mechanism or magnitude implies
similarity in augmentation impact.
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Figure 5 shows the distribution of islands along the frequency
axis for each augmentation. The most obvious feature across aug-
mentations is a strong concentration of attention at 3600Hz. All
SpecAugment augmentations, except for SM, and the base model
exhibit this behavior. Interestingly, this peak is at the same frequency
identified by Maltby et al. [40] as an inflection point between well-
reproduced (low frequency) and poorly reproduced (high-frequency)
deepfake speech. Frequency trends between LB and SS augmenta-
tions are highly similar to the behavior of the base model, with a
strong attention peak at 3600Hz. The LD policy shows a bimodal
distribution of attention with a reduced peak at 3600Hz and a sec-
ond peak at 1000Hz. The SM policy is also strongly bimodal with
a primary peak at 7000Hz and a secondary peak at 600Hz. Overall,
only the LD and SM policies induced strong changes in frequency
distribution.

Takeaway: The results presented here show that the differences in
model behavior induced by data augmentation are readily visible in
our pipeline. We observe behavior that is both expected (diffusion of
attention after masking) and counter-intuitive (sparse attention after
LD, SS augmentations). We note that the frequency distribution of
attention regions aligns well with expectations based on existing liter-
ature. The variation in both attention region diffusion and frequency
distribution between augmentations indicates that the similarity of
augmentations does not imply similarity in the final model behavior
— underscoring the practical value of the approach we present.

6 AUDIO AUGMENTATION FOR IMPROVED
RESILIENCE AGAINST COMMON AUDIO
ENCODINGS

In addition to evaluating existing augmentation techniques, behavior
visualization can aid in the development and validation of augmen-
tations where specific behaviors are desired or are known to be
undesirable. To illustrate this, we demonstrate the development of an
augmentation to reduce performance degradation on destructively
encoded audio. The encoding system could be any number of lossy
compression algorithms, transmission across traditional or VoIP
telephony systems, or other audio transformations that do not fully
preserve the original audio content. Encoded audio more accurately
represents deepfakes as they may be found in the wild, as opposed
to clean, high-fidelity lab-recorded/generated samples and is moti-
vated by several examples of real-world Al-enabled telephone fraud
[45, 47] and attacks in the academic literature [8, 29, 68].

We simulate a telephony system using the G.711 audio codec,
a high-quality, narrowband codec in wide use throughout the Pub-
lic Switched Telephone Network which encompasses most global
traditional and VoIP telephony [28]. Therefore, any audio, fake or
otherwise, that is transmitted through the telephony system has a high
chance of being encoded to the G.711 standard. This audio codec is
designed to preserve information in the frequency region that is most
associated with speech intelligibility (300Hz-3400Hz) and maintains
a relatively high perceived quality of speech. However, the codec’s
8000Hz sample rate leads to the loss of all speech information above
4000Hz. Additionally, the source audio is compressed to an 8-bit
depth through p-law encoding, which provides higher quality repro-
duction of lower amplitude samples at the cost of reduced dynamic
range and distortion of high amplitude samples.
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Distortion ViSQOL MOS
None (Baseline) 4.52
G.711 Codec 3.32
OPUS Codec 443
Noise Add. 3.08

Table 3: ViSQOL Mean Opinion Scores (MOS) for each tested audio
distortion. Scores between 3 and 4 are considered acceptable for com-
mercial VoIP while scores between 4 and 5 are considered high-fidelity.

Given that the G.711 codec primarily impacts information above
4000Hz, we can label all model attention above this point as undesir-
able. The first step is to determine whether our model exhibits such
behavior. To do so, we can look at the frequency distribution for the
base model given in Figure 5, which shows a moderate amount of
attention explicitly above 4000Hz. Additionally, given that the large
attention peak at 3600Hz represents the center of those islands, we
can expect that some regions centered on this peak will have attention
above 4000Hz. Knowing that the base model exhibits moderate atten-
tion in the unpreserved region, we explicitly define two goals: reduce
or eliminate attention in and adjacent to the unpreserved region and
induce more diffuse attention in general, which is associated with
more robust performance.

Our augmentation uses an alternative form of frequency masking,
randomizing all information above 4000Hz, but maintaining the
speech-like characteristics. Rather than replace the masked region
with a constant value, we randomly select another sample and replace
the high-frequency information in the original sample with the high-
frequency information in the random sample. This is accomplished by
low-pass filtering the original sample, high-pass filtering the random
sample at the same cutoff frequency, and summing the two signals.
The result is that the masked region contains random data that is not
useful for classification, but still maintains the expected structure of
speech data in that region. An example spectrogram before and after
augmentation is shown in Figure 6.

(a) source

(b) spliced

Figure 6: Spectrograms for samples before and after augmentation show-
ing the replacement of the high frequency region with random speech.

When evaluating the performance of augmentations, we must
consider performance on both the original, undistorted audio and
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Augmentation Base G.711 Noise Opus

None 0.997 0.751 0.308 0.115
Splice 0.936

SALB 0.998 0.552 0.030 0.051
SALD 0.716 0276 0.223
SA SM 0.608 0.084 0.111
SA SS 0.702 0.167 0.200

Table 4: Performance of base and data-augmented models on baseline
and distorted audio. Performance is reported by MCC. Top-performing
entries are highlighted and bold.

the target distorted or out-of-distribution audio. In addition to the
unencoded and the G.711 encoded data, we evaluate augmentation
performance on two other classes of distortion: a more modern, high-
fidelity, and similarly widely used encoding, OPUS, and generic
noise addition in which Gaussian noise is added to each sample to
produce a low but perceptible noise floor.

To determine the impact on perceptual quality for each distortion
class, we employ the ViSQOL metric proposed by Chinen et al.
[11] which gives an objective measure of perceptual change relative
to an unperturbed sample as a Mean Opinion Score (MOS). MOS
ranges from 5 (high quality/low distortion) to 1 (poor quality/high
distortion). For reference, an MOS of 3-3.5 is generally considered
sufficient for usable commercial VoIP service while an MOS of
4.3-4.5 is considered excellent or high-fidelity VoIP. ViSQOL MOS
metrics are summarized in Table 3. The average ViSQOL score for
OPUS-encoded samples is 4.38, G.711 is 3.32, and noisy samples
score 3.08.

6.1 Augmentation Results

The performance results for each augmentation are shown in Table 4.
The Splice augmentation provided the best performance on all dis-
torted audio. It outperforms the SpecAugment augmentations by an
average of 36% on the target G.711 encoded audio. Although the
raw performance of the Splice augmentation is lower on the other
distortions than on the target G.711 distortion, the relative improve-
ment over competing augmentations is significantly greater, rising
to a 330% improvement on Noise data and a 429% improvement on
Opus encoded data. The SpecAugment augmentations do achieve
perfect classification on the undistorted audio, a small but significant
improvement over the base model. However, the dramatically better
performance of the Splice augmentation on distorted audio, achieved
while maintaining acceptable performance on the undistorted sam-
ples, makes it a more robust choice than the alternatives.

When we view the distribution of attention for the Splice augmen-
tation (Figure 7), we see that it exhibits a more uniform behavior
across frequency ranges. The distribution does have two small peaks:
one at 700Hz and the other at 5500Hz. The high-frequency peak
closely matches a small peak in the base model distribution (Figure
5), indicating that, despite our augmentation’s high performance, we
did not entirely eliminate high-frequency attention. The Splice dis-
tribution does show that the major peak at 3600Hz has been entirely
eliminated, with most attention now distributed between 600Hz and
2500Hz.
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Figure 7: Probability distribution function of attention islands for the
Splice augmentation and the LD SpecAugment policy, the highest per-
forming SpecAugment policy. LD better eliminates high-frequency at-
tention but has less uniform attention overall.

Takeaway: Using the proposed approach, we can conclude that
our augmentation successfully encourages diffuse attention and par-
tially eliminates high-frequency attention. While the raw perfor-
mance characteristics of this augmentation would be a compelling jus-
tification for its use, confirmation that the induced behavior matches
the rationale for the performance increase greatly increases user con-
fidence in the augmentation. Such introspection would not have been
possible without our deliberate choice to utilize a spectrogram-based
architecture.

7 PERFORMANCE EVALUATION

Our approach, as with other class-based visualization approaches
(Grad-CAM, TIS), requires that the model be an effective classifier
to ensure that the change in confidence from spectrogram occlusion
is strongly related to the relevant features in the target audio. We
validate AST’s performance on several modern deepfake datasets to
ensure that it is suitable for complex detection tasks. Additionally,
given the substantial number of audio classification approaches being
applied to audio deepfake detection and the limited usage of AST in
the same space, we demonstrate that AST matches or exceeds the
performance of three commonly used, high-performing classifiers,
further motivating its wider adoption.

7.1 Datasets

The first dataset, Wavefake [18] is a lab-generated dataset. Wave-
fake’s composition is unique in that it contains wide variability in
deepfake generators (7 generators), but no speaker variation, with all
real samples taken from a single female speaker. In The Wild [46]
provides both higher speaker variation (58 speakers) and a represen-
tative selection of generators as they occur in real-world deepfakes.
Both of these datasets are widely used in existing literature. We also
incorporate data from the lesser-known Political Deepfakes Incidents
Database (PDID) as an additional source of “deepfakes appearing in
the wild” [64].

Structurally, each dataset consists of real and deepfake audio,
divided into training, validation, and testing splits in a 7:2:1 ratio.

Boo Fullwood and Fabian Monrose

Metric  Real Fake No.  No. Avg
Dataset Samples Samples Spkrs Gens. Length
Wavefake 13,100 91,700 1 7 6.6s
In The Wild 11,816 19,963 58 - 4.3s
PDID none™ 41 - - 15.9s

Table 5: Composition information. “We augmented the PDID dataset
with real samples from the Fake-or-Real [55] corpus. The ‘-> symbol
denotes unknown.

The audio samples for each dataset are stored as .wav files with a
sampling rate of 16000Hz and a bit depth of 16 bits.

Wavefake [18] is derived from the LJ Speech [26] dataset which
consists of 13,100 recordings of a single speaker reading non-fiction
passages. Wavefake augments this with several voice conversion
models that attempt to reproduce the original audio from a transcript
and training examples of the speaker. The architectures used to gen-
erate spoofed audio were selected based on high-performing models
that include MelGAN Large, Full Band MelGAN, WaveGlow, HiFi-
GAN, and Parallel WaveGAN. The fake audio data contains an equal
number of samples from each generator.

In The Wild [46] is a collection of in vivo-captured deepfakes of
58 celebrity voices, along with real samples for all speakers, totaling
38 hours of audio. We remove samples with durations less than 2.0s
as some excessively short files do not contain recognizable speech.
This results in a final dataset size of 31,779 samples. While the
number and types of generators are unknown, the varied, real-world
selection makes this a valuable performance comparison.

The Political Deepfakes Incidents Database (PDID) [64] is a
curated list of deepfakes of prominent political figures. The database
includes video samples collected from social media and news out-
lets. We extracted audio from the videos and excluded samples that
contained a mixture of real and spoofed audio, or those labeled as
“cheap fakes” (e.g., speeding, slowing, or otherwise re-contextualized
footage). Each sample was manually vetted by the authors, removing
unrelated audio (e.g., commentary at the beginning), and we sep-
arated multi-speaker samples into individual files. As this dataset
does not contain any bonafide audio, real audio from a different
speech corpus [55] was incorporated to serve as training data. This
corpus contains both male and female samples from a variety of
speech corpora. We calculate the distribution of sample lengths in
this real audio, split the PDID samples to match that distribution,
and normalize the amplitude of each sample to reduce the potential
for introducing extraneous distributional differences.

7.2 Selecting Competitive Detectors

‘We compare AST to three advanced detectors, namely Wav2Vec2.0 [2],
Whisper [53], and RawNet2 [60].

The RawNet?2 architecture is a convolution-based deep learning
approach that operates directly on the raw audio waveform rather than
computing audio statistics like Mel Frequency Cepstral Coeflicients
or Linear Frequency Cepstral Coeflicients prior to classification.
The architecture is one of the baseline models associated with the
ASVspoofdataset and is widely used as a point of comparison for
novel detection approaches. Additionally, it serves as a fundamental
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baseline for non-transformer performance. We trained RawNet2
from scratch for each performance evaluation, following the training
approach suggested in the original paper [60].

The Wav2Vec2.0 detector was selected given its current status as
the highest-performing approach on the ASVspoof dataset and its
broad adoption [41, 61, 70] across audio classification and automatic
speech recognition fields. Wav2Vec2.0 represents a strong point of
comparison for all other transformer-based approaches.

Finally, Whisper is another high-performance transformer archi-
tecture that emphasizes robust automatic speech recognition. It has
seen moderate adoption in the audio deepfake detection field [37],
often as part of ensemble models [39, 50] or as a trainable prepro-
cessor [30, 50].

For the transformer-based models, we utilize pre-trained models
provided by the HuggingFace repository and fine-tune them for each
performance evaluation. We use the facebook/wav2vec2-base and
openai/whisper-large checkpoints for Wav2Vec2.0 and Whisper,
respectively. Together, the selected models provide coverage of both
the current state-of-the-art detector architectures and significant mile-
stones in audio deepfake detection.

Training Parameters: Each model is trained for 10 epochs, using the
Adam [32] gradient optimizer and the cross-entropy loss function.
The learning rate for AST models was set at 1e—5. A warmup ratio of
0.05 was used to ramp up the learning rate from 0 to its set point over
the first 5% of training steps. Doing so limits training misbehavior
while the model output is largely random. A plateau learning rate
scheduler is used to ramp down the learning rate once validation
performance improvements stabilize or begin to degrade. This strat-
egy limits the overfitting of models that may reach a plateau earlier
than 10 epochs. More information about hyperparameters is given in
Appendix 10.1.

7.3 Metrics

To gauge the efficacy of our approach, we conduct evaluations using
Accuracy, Equal Error Rate, and Matthews Correlation Coefficient
metrics. In the context of these metrics, spoofed samples are consid-
ered as positive. False positive rate, therefore, refers to the rate at
which real samples are misclassified.

7.3.1  Accuracy (Acc). The ratio of correct predictions to total pre-
dictions. It is easily interpretable, but it can be misleading as strong
performance on an overrepresented class can lead to overly optimistic
performance.

TP+TN
TP+TN+FP+FN

7.3.2  Equal Error Rate (EER). The average error rate of a model
whose decision threshold is set such that the model’s false positive
rate (FPR) and false negative rate (FNR) are equal. The decision
threshold is determined by a linear search, evaluating the FPR and
FNR at each point. The threshold with the minimum difference be-
tween FPR and FNR is selected, and the EER is reported as:

Acc =

EER = FPR+ FNR

Unfortunately, even though EER is no longer recommended as
a performance metric for authentication systems [59], it is the de
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Dataset Model Acc EER MCC
AST 0.99 0.001 | 0.99

Wavefake Wav2Vec 099 0.006 0.97
Whisper 094 0.022 0.89

RawNet2 0.98 0.01 0.96

AST 1.00 0.00 | 1.00

. Wav2Vec 1.00 0.00 | 1.00

InThe Wild g1 icper 097 003 0.95
RawNet2 091 0.04 0.84

AST 1.00 0.00 | 1.00

PDID Wav2Vec 1.00 0.00 | 1.00

Whisper 1.00 0.00 | 1.00
RawNet2 092 0.04 0.86

Table 6: Model performance all datasets. Top-performing entries are
highlighted in bold.

facto standard in deepfake detection papers. Thus, we include it here
primarily to facilitate comparisons with prior work.

7.3.3  Matthews Correlation Coefficient (MCC). For binary classifi-
cation tasks, the Area Under the Curve of the Receiver Operating
Characteristic curve is commonly used. However, if not carefully
applied, that metric can provide inflated results [10]. A more ap-
propriate choice is the Matthews correlation coefficient [4, 42] that
better captures when base metrics (recall, precision, specificity, and
negative predictive value) simultaneously achieve high scores. MCC
ranges between [—1, 1] and a value of 0 indicates a random classifier.
Negative values indicate inverse predictions, i.e. the model is more
likely to generate an incorrect prediction than correct.

TP« TN — FP « FN

MCC =
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

We include MCC scores because they offer a comprehensive evalua-
tion of model performance in a single metric [71].

7.4 Results from Standard Testing Scenarios

The results in Table 6 show that our application of the Audio Spec-
trogram Transformer model for deepfake detection performs ex-
ceedingly well, achieving MCC scores of 0.99, 1.00, and 1.00 on the
Wavefake, In The Wild, and PDID datasets, respectively. In particular,
it outperforms all competing architectures on the Wavefake dataset,
with the other state-of-the-art detectors, Wav2Vec2 and Whisper,
achieving MCCs of 0.97 and 0.89, respectively. On the In The Wild,
both AST and Wav2Vec achieve perfect classification, while RawNet
dataset, AST performance is slightly lower than Wav2Vec, though
the EER of 0.02 puts it within the top models on this dataset. All
transformer models (AST, Wav2Vec, Whisper) achieve perfect clas-
sification on the PDID dataset, despite a total training data duration
of only 25.4 minutes. This high performance may be due to distribu-
tional differences between the PDID fake samples and the introduced
real samples used for training. Though steps were taken to minimize
potential differences, this risk is implicit for datasets in which real
and fake samples are not collected from the same environment.
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Interestingly, performance on the Wavefake dataset is generally
worse than for either real-world dataset, with AST and Wav2Vec
showing small, but noticeable, reductions (1% and 3% MCC reduc-
tion) and Whisper showing a larger drop of 7.3%. This is despite
the simplified testing scenario presented by the Wavefake dataset,
where speaker variation is minimized. These results may indicate
that the quality of lab-produced deepfakes is higher than that of the
typical in vivo deepfake. Alternatively, as noted above, real-world
datasets must contend with strong distributional differences between
classes for features unrelated to the primary classification task (varia-
tion in file source compression, leading and trailing silence duration,
etc.). While steps have been taken to minimize the risk of confound-
ing dataset characteristics in these evaluations, as noted above, the
difficulty in preparing diverse audio datasets remains.

Takeaway: The findings indicate that the AST architecture is well
suited for challenging audio deepfake detection tasks, on par with
state-of-the-art detectors. The high level of performance attained —
coupled with the explainability inherent in the spectrogram represen-
tation — makes it a strong candidate for detector-based analysis of
deepfake generators and ensures its utility on detection tasks where
feature localization may be non-trivial.

8 FUTURE WORK

Although both G.711 and OPUS are widely used codecs, they only
represent a subset of the types of transforms in the broader class
of encoding schemes. Further research is needed to identify shared
characteristics between the class as a whole and to identify methods
to help design detectors that are resilient to a wider spectrum of
encoding schemes, as well as to identify other sources of systematic
distortion that are likely present in audio transmission channels.

9 CONCLUSIONS

The increase in spread and quality of audio deepfakes necessitates a
deep understanding of the behavior of deepfake detectors and how
this behavior can be modified to achieve more robust detection. We
demonstrate that ‘common sense’ expectations of the impact of data
augmentation often translate poorly to the actual change in model
behavior, even when the augmentations improve model performance.
This revelation is enabled by adopting classifier architectures that
provide easily interpretable behavior, which can be achieved without
sacrificing detection performance. We further show that this inter-
pretability can be used to not only grant insight into the impact of
existing augmentations, revealing both expected and counterintuitive
behaviors, but can also be leveraged by researchers to better inform
the augmentation development process. We illustrate this utility by
applying our framework to the development of a novel augmentation
based on a priori assumptions of desirable behavior and demonstrate
significant improvements in detector resilience to common audio
distortions over existing general augmentations. We validate that the
behavior induced by this augmentation aligns with our expectations.

‘We hope that the approach we present for improvements in detector
interpretability will help other researchers design more robust models
and augmentations that offer effective classification of high-quality
deepfakes in real-world environments, thus decreasing the potential
for societal harm that audio deepfakes currently pose.

Boo Fullwood and Fabian Monrose

10 CODE AND DATA AVAILABILITY

To encourage further research in this area, we have shared all code
used to train models, visualize and compare model attention, and
generate augmented audio samples at https://github.com/funkshun/
ASTEXxplainability. Additionally, we provide the trained models for
our evaluations and code used to compute the performance metrics
in Sections 6.1 and 7.4.
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10.1 Training Hyperparameters

Training was conducted using the hyperparameters given in Table
7 on an nVidia A30 GPU. The hyperparameters were taken from
recommended values distributed with each of the models. The batch
size was selected based on available GPU memory.

Parameter Value
Epochs 10
Learning Rate 1x107°
Batch Size 8
Gradient Accumulation Steps 4
Warmup Ratio 0.05
LR Scheduler Factor 0.3
LR Scheduler Patience 1.0

Table 7: Training Hyperparameters

10.2 Adversarial Attacks

In this paper, we do not consider optimized distortions introduced by
adversarial example generators, instead focusing on distortion types
that are likely to be introduced in non-adversarial settings, but which
still pose a significant risk to detector efficacy. The analyzed aug-
mentation techniques are intended to provide improvements in these
areas, but only provide static defenses, i.e., the decision boundary
of the detector does not move once the model is deployed, which is
insufficient to prevent adversarial optimization. Therefore, given a
sufficient number of model queries, these generators can produce
a minimal distortion modification to any audio to cause it to be
misclassified, regardless of data augmentation. Nevertheless, for
completeness, we adapt the Sign-OPT black-box attack [9] from the
image classification space to apply to the generation of adversar-
ial audio perturbations. The Sign-OPT attack requires significantly
fewer queries to optimize than competing approaches. We tested the
attack against all three transformer architectures in our evaluation
and found that, as expected, all three were susceptible to the adversar-
ial examples. The samples had an average ViSQOL score of 4.448,
which is very close to the baseline average of 4.52, demonstrating
the minimal distortion characteristics of these attacks. On average,
Sign-OPT required approximately 20,000 queries to produce an ad-
versarial example against AST regardless of augmentation. This was
higher than Wav2Vec and Whisper (approx. 16000 queries), but we
still consider it a successful attack. This class of adversarial approach
remains a significant threat to detector robustness despite significant
work in this area.
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