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Abstract
Identifying a binary’s compiler configuration enables

developers and analysts to locate potential security is-
sues caused by optimization side-effects, identify binary
clones, and build compatible binary patches. Existing
work focuses on identifying compiler family, version and
optimization level of a binary using semantic features and
deep learning techniques. Unfortunately, in practice, bi-
naries are an amalgamation of objects and functions that
can be compiled at different optimization levels with a
variety of individual, fine-grained, optimizations that may
be applied depending on the structure of the code. Hence,
rather than recovering high-level artifacts, i.e., compiler
family, version, and optimization level, we explore the
recovery of individual, fine-grained, optimization passes
for each function in a binary. To do so, we develop an ap-
proach using specially crafted features alongside intuitive
and understandable machine learning models. Our evalu-
ation on 15 popular open-source repositories shows that
our approach compares favorable with the state-of-the-
art deep learning approach in compiler family, compiler
version and optimization level identification. For fine-
grained optimization passes, our evaluation on 149,814
functions from 552 binaries in four popular open-source
repositories shows that our approach achieves an aver-
age F-1 score of 92.1% for all optimization passes and
an average F-1 score of 89.8% for optimization passes
that could have negative impacts on security. Moreover,
our approach includes experimental support for dynamic
feature extraction via binary emulation, and our results
shows that such features offer promising potential in im-
proving the accuracy of optimization pass identification.

1 Introduction

Modern compilers serve much more than simple trans-
lators that convert human-readable program code to ma-
chine instructions. They are also fully automated opti-
mizers that improve the performance of code via numer-

ous translations, including the removal of unused code,
re-ordering of instructions, replacing expensive compu-
tations with more efficient ones, and merging functions.
Ideally, these optimizations do not change the behavior of
the program in any way, other than making the resulting
code faster and smaller.

However, while compiler optimizations are preformed
in ways that should not interfere with the normal ex-
ecution of a program, some optimizations could have
a negative impact on security. In fact, recent stud-
ies [3, 19, 21, 22, 24] have shown that certain optimiza-
tions could nullify protections and verification of secure
functions as well as introduce timing side channels. For
example, the dead code elimination optimization could
remove instructions that erase sensitive data after using it,
causing the sensitive data to be vulnerable to leakage if
there is a memory error later on in the program. Similarly,
the strength reduction optimization that replaces expen-
sive operations with more efficient ones could open side
channels. Developers are usually unaware of these opti-
mizations because the compiler automatically chooses
the set of optimizations to apply based on the optimiza-
tion level, code structure, target architecture, and target
processor family. Moreover, even subtle changes can cre-
ate additional code reuse gadgets, causing the compiled
program to be more vulnerable to attacks [1].

One way to avoid these pitfalls is by having developers
manually tweak their compilation scripts to avoid apply-
ing potentially risky optimizations to secure functions
that handle sensitive data. However, for large projects,
this would be a daunting and tedious task. In order to
maximize performance while avoiding risky optimiza-
tions, developers need to manually tweak optimization
flags in addition to the optimization level. With hun-
dreds of both architecture-independent and architecture-
dependent flags, manually tweaking optimization flags
is challenging and time-consuming [5]. Moreover, some
compilers also include hidden optimizations that can-
not be manually controlled, and the code base for mod-
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ern compilers is too large for users to review and study
for the logic behind optimizations [7]. In practice, de-
velopers for security-critical projects, such as OpenSSL
and mbed TLS, take another approach by implementing
workarounds in the source code of secure functions to
“confuse” the compiler such that it does not apply opti-
mizations to the secure code [19, 21, 24].

These workarounds, however, are not always stable. As
compilers introduce more optimizations in each release, a
workaround that successfully tricks one version may not
be effective for a future version, and developers then need
to implement a more complex workaround [19]. There-
fore, a solution that helps identify optimizations applied
to a binary at the function level could offer significant
practical value: developers could use such an approach
to, for example, verify that the program is compiled us-
ing optimizations that do not negatively impact security
before releasing the binary.

In addition to safety verification, compiler optimiza-
tion classification could be beneficial to binary code clone
detection and binary patching. Compiler configurations
can cause significant degradation in the performance of
clone detection techniques [6, 8, 10, 12]. Similarly, in
binary patching [4], locating the vulnerable function to
be patched becomes more difficult in the presence of
certain compiler optimizations.

Facing some of these challenges ourselves when try-
ing to safely perform binary patching at a function level,
we revisited the state of the art in compiler artifact re-
covery. We found that the most comprehensive of these
techniques [2, 16, 17, 20] focus on identifying the com-
piler family, the major compiler version, and the opti-
mization level for a binary, either for individual functions
or for the entire binary — but, we need more detailed
information (i.e., the passes that may have been applied).
Unfortunately, this level of recovery has not been well
explored, and even when it has been mentioned, the au-
thors conclude that “[f]urthermore, some flags would be
challenging, if not impossible to detect, the dead code
elimination flag being one example” [15].

Additionally, we found that contemporary approaches
rely on either semantic features (e.g., the control flow
graph) or employ deep learning. As the interpretability
of the outputs was a key motivating factor for us, we in-
stead opted for the use of shallow learning with specially
crafted features. To our surprise, our approach performed
on par with or better than the state of the art [20] that
uses highly-tuned neural networks for optimization level
identification (e.g, -O1 versus -O3). More importantly,
we take a step further and show that contrary to recent
statements by Pizzolotto and Inoue [15], one can detect
the application of certain optimization passes with good
accuracy. Our approach, coined PassTell, helps identify
optimization passes that affect security for individual

functions, such as different forms of dead code elimina-
tion, code motion, and strength reduction passes.

Our specific contributions include:

1. We designed PassTell, a new approach in compiler
configuration identification that recovers the opti-
mization passes applied at the function level.

2. We explored the effects of using dynamic features
extracted by force-executing each function. We
show that the use of such features offers potential
in improving accuracy, albeit in certain cases.

3. We evaluated our machine learning approach and
compared the results with the state-of-the-art. We
find that our approach performs on par with the state-
of-the-art in identifying compiler family, compiler
version, and coarse-grained optimization level.

4. We evaluated our approach using four variants of
138 programs from four open source repositories
built with the latest development version of the
Clang 14 compiler. Our approach is capable of iden-
tifying most optimization passes with high accuracy.

2 Background

2.1 Compiler Optimization

Modern compilers (e.g., GCC, LLVM, and ICC) offer
complex optimizations that improve the performance and
reduce the code size of the compiled program. In theory,
these compilers provide different levels of optimizations,
and programmers only need to specify an optimization
level for the compiler to automatically apply the corre-
sponding set of optimizations.

In practice, however, optimization is more complicated
than simply applying a fixed set of optimizations passes
for each optimization level. The LLVM compiler [11],
for example, uses pass managers to control the passes
to apply as well as the order of running the passes. The
pass manager considers multiple factors when deciding
the passes to run in addition to the optimization level
specified by the user, including the target architecture, the
target processor generation, and the source code structure.
For example, for programs targeting outdated x86 proces-
sors, the compiler would avoid applying optimizations
that use the AVX instructions that were recently intro-
duced, and for functions without loops, the pass manager
would avoid running optimizations that improve loop
performance. Therefore, knowing the optimization level
of a binary is not enough to determine the exact set of
optimizations applied to the binary.
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2.2 Security Implications

While compilers can take care to ensure that their op-
timizations do not change the behavior of normal pro-
gram execution, fully automated reasoning about the pur-
pose of deliberately ineffective or seemingly useless op-
erations added by the developers is not (yet) possible.
Hence, such instructions are targets for optimization, po-
tentially undermining security assumptions. D’Silva et al.
[3] called this problem the “correctness-security gap” and
defined three types of security violations caused by com-
piler optimization: persistent state, side channel attacks,
and undefined behavior.

A persistent state violation is when data persists out-
side of the scope it is designed to be available. D’Silva
et al. [3] listed three optimizations that could cause this
violation: dead code elimination, function inlining, and
code motion. For example, in a password verification
function where the password is temporarily stored in the
memory during verification, the compiler may consider
the operations that erase the local memory to be dead
code and remove them, causing the password to exist in
the memory after it is used, until it is eventually over-
written by a later function. Similarly, if a trusted security-
sensitive function is inlined in an untrusted function, then
the lifetime of the local variables of the trusted function
would be extended to when the untrusted function returns.
Finally, code motion may switch the order of instructions
to avoid unnecessary computation or to improve local-
ity. This optimization may cause the program to write
sensitive values to memory before verifying that the oper-
ation is needed. Beside these three optimizations, Simon
et al. [19] added that in situations where the entire stack
frame needs to be erased, any optimization that changes
the size or the layout of the stack frame such as tail-call
optimizations may cause the erasure to be incomplete.

Compiler optimizations could also introduce side-
channels that leak information about the program’s ex-
ecution based on its timing or memory usage. To avoid
side-channels, the developer may add unnecessary or in-
efficient operations to functions, but the optimizations
may simplify or remove these operations, thereby re-
introducing the side-channel. D’Silva et al. [3] listed
three optimizations that could introduce side-channels:
common subexpression elimination, which merges mul-
tiple instructions into one instruction to avoid duplicate
computation; strength reduction, which replaces expen-
sive instructions with more efficient ones, and peephole
optimization, which inspects surrounding instructions to
find opportunities to reorder or replace instructions for
simpler computation or better locality.

Our work focuses on identifying optimizations that
could cause persistent state violations or side-channels.
Identifying undefined behavior (i.e, violations caused by

undefined behavior when developers use semantics that
are undefined by the specification) is out of scope.

3 Related Work

Rosenblum et al. [18] presented seminal work in the
area of compiler identification from binary files. Their
approach focuses on identifying only the compiler fam-
ily for code snippets in the IA-32 architecture using a
probabilistic graphical model. Later on, Rosenblum et al.
[17] extended that work and presented Origin, a tool that
identifies compiler family, compiler version, and opti-
mization level for each function in a binary. Origin uses
a linear support vector machine model with features in-
cluding idioms of instructions, sub-graphs of the control-
flow graph, and high-level layout of functions such as
the starting address. However, for optimization level, Ori-
gin could only perform coarse-grained identification with
two options: “low” for -O0, -O1, and “high” for -O2, -O3.

A few years later, Rahimian et al. [16] presented a
different approach (called BinComp) for compiler prove-
nance identification. BinComp focuses on identifying the
compiler family, compiler version, and optimization level
for the entire binary. Different from Origin, BinComp
heavily utilizes features extracted from utility functions
added by the compiler to identify the compiler version
and optimization level. These utility functions include
program initialization, the startup code, and the termina-
tion code. While these functions could be highly indica-
tive of an optimization level, it is impossible to perform
identification for each function in a binary. Therefore,
BinComp could only identify the compiler configuration
used to compile the main routine of a program.

More recent work [2, 15, 20, 23] in compiler prove-
nance identification started using neural networks for
classification. Chen et al. [2] presented HIMALIA, a clas-
sifier using recurrent neural network to identify the opti-
mization level for each function of a binary. HIMALIA
uses vectors of disassembled instructions as features
and uses two recurrent neural networks for classification.
One network classifies the function into one of the four
classes: -O0, -O1, -O2/O3, and -Os; the other network
then differentiates -O2 and -O3. While the evaluation
of HIMALIA includes binaries compiled with different
versions of the LLVM Clang compiler, it only focuses
on identifying the optimization level of each function,
making no distinction of optimizations applied in differ-
ent compiler versions. Yang et al. [23] presented BinEye,
a classifier using convolutional neural network to iden-
tify optimization levels for each object in ARM binaries.
Since each instruction in the ARM architecture is four
bytes, BinEye uses the first 1024 instructions of each
object as raw features and extracts word and position em-
beddings from them. Tian et al. [20] presented NeuralCI,
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a classifier with either convolutional neural network or
recurrent neural network to identify the compiler family,
compiler version, and optimization level for each function
in a binary. NeuralCI uses Word2Vec [14] embedding to
allow instructions with variable size. Similar to BinEye,
the evaluation of NeuralCI combined -O2 and -O3 into
one coarse-grained optimization level of OH.

Most recently, Pizzolotto and Inoue [15] presented an
approach that uses either a convolutional neural network
or a long-short term memory network to identify the com-
piler family and optimization level for code snippets of
2KB in seven different architectures. This approach in-
cludes either the raw bytes or the opcodes as features
but concluded that raw bytes lead to better results when
large amounts of training data are available. Similar to
HIMALIA, the evaluation of this approach includes five
different optimization levels: -O0, -O1, -O2, -O3, and
-Os. As NeuralCI performed the most in-depth and realis-
tic evaluation, and it was shown to outperform the other
approaches that classify at the function level, we select it
for comparison later on in this paper.

4 Approach

We now present PassTell, an approach for identifying the
set of optimization passes likely applied to each function
in a binary file. Figure 1 shows the overall workflow.

4.1 Dataset Generation
Our dataset used to train the classifier includes functions
compiled with different optimizations. Each function in-
cludes a set of optimization passes that were applied
during compilation and the instructions in the function.
The overall workflow of dataset generation is as follows:
first, we compile programs with different optimization
levels and record the list of optimizations applied to each
function; then, we disassemble the binary to retrieve the
instructions of each function; finally, we sanitize the in-
structions by removing detailed memory addresses, call
targets, and immediate values.

To train and evaluate our classifier, we first need to
gather the optimization passes that modify a function dur-
ing compilation. While the Clang frontend of the LLVM
compiler [11] has an option to list the optimizations ap-
plied to each function during compilation, this option
outputs all passes that run, even the ones that make no
modification. Therefore, we made modifications to ex-
tract the optimization passes that modify a function dur-
ing compilation. Section 5 discusses the modifications
we made to the LLVM compiler.

After disassembling the binary file, we sanitize the
instructions before feature extraction. Specifically, we
replace all memory addresses with the #MEM# label, all

call targets with #TARGET#, and all immediate values with
#IMM#. We make this adjustment because the detailed
memory addresses, immediate values, and call targets
are highly variable across different programs and are
not useful in optimization classification. Tian et al. [20]
applied similar rules to the instructions.

4.2 Dynamic Feature Generation
As an extension, we also present a method to extract
changes of register values (recovered via emulation) and
use these dynamic features in our classifier. At present,
the dynamic features only include register deltas. We use
a binary emulation library to attempt to force-execute
each function in the dataset. After the execution of each
instruction, we record the address of the instruction, the
registers changed, and the deltas of their values. Within
these three types of data, the instruction address is only
used to compute the coverage of the force-execution and
to avoid endless loops.

While it may seem unnecessary to include dynamic
features as the dataset already includes the entire disas-
sembly of the function, we posit that dynamic features
could still contribute to the classification because some
changes in the registers are implicit and not shown in
the disassembly. For example, the FPSW register includes
flags, the stack address, and the current code for floating
point operations. Additionally, floating point operations
may cause this register to change implicitly. Our main
goal of including dynamic features is to explore their
potential to improve classification accuracy. We expect
progress can still be made in future work.

4.3 Feature Extraction

Category Feature Type Example
Static Opcode call

Instruction mov esi ecx
Register rsi
2-gram of opcodes pop | ret
2-gram of instructions pop rbp | ret
First instruction push r15
Last instruction xchg ax ax

Dynamic Register value delta rbp=-248

Table 1: Feature types and examples for each type of
feature used in our approach

By default, we use seven types of static features: op-
code, instruction, register, two-gram of opcodes, two-
gram of instructions, and the first and last instruction of
a function. The register value delta is an optional feature.
Table 1 lists an example of each feature type.
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Figure 1: Workflow of PassTell for optimization pass classification

We apply feature selection before extracting features.
There are overwhelming amount of different instructions,
two-grams of opcodes, two-grams of instructions, and
changes of register values, so we select 1,000 features
from each of these four feature types, for each optimiza-
tion pass. This means that we use different features for
the classification of each optimization pass. Our feature
selection strategy for each optimization pass is as follows:
first, we filter the dataset such that it is balanced for the
optimization pass (i.e., the number of functions with the
optimization and the number of functions without the op-
timization are the same); second, we sort the features by
the number of functions in the balanced dataset that have
at least one occurrence of the feature; finally, we select
the 1,000 most frequent features of each type. Table 2
shows an example of the selected features for the Early
CSE pass. For the other feature types, including opcode,
register, the first instruction, and the last instruction, we
use all features in these types without applying feature
selection because there are less features in these types.

All features hold binary values. That is, we check
whether the function has this feature or not. For example,
a leaf function (i.e., a function that does not call any other
functions) that performs arithmetic operations in a loop
should have value 0 for the opcode feature call because
it does not include any call, and it may have value 1 for
the opcode feature test because it may use the test
instruction to determine the end condition of the loop.

We decide to use this simple set of binary features
as a result of interpretable feature engineering. Our ap-
proach with interpretable feature importance allows us to
compare and select the most efficient and effective fea-
ture types. We also tested using frequencies as features
instead of binaries but found minimal improvements.

4.4 Classification

After generating the feature set, we then train our classi-
fier for optimization classification. For each optimization,
we train a binary LightGBM classifier [9] that decides if
a function is modified by this single optimization.

LightGBM is an implementation of gradient boosting
decision tree. We select this classifier instead of deep
learning techniques for two reasons. First, modern com-
pilers include a large amount of passes. In our dataset,
for example, we observed a total of 83 unique compiler
passes applied to functions or components inside a func-
tion (e.g., a loop). Each pass requires a separate binary
classifier. Therefore, in order to train the dataset with a
reasonably large dataset, our choice of classifier should
scale well in both training time and memory consump-
tion. Second, classifiers such as support vector machines
and neural networks cannot easily demonstrate the rea-
soning or the importance of features. Decision tree-based
classifiers, on the other hand, can more readily show the
reasoning and the importance of features.

In the training phase, a list of all optimization passes
is generated and a model for each is created. That is, for
each function, we create a list of binary labels for each
pass to indicate if the function was modified by each
of these corresponding passes, then a LightBGM-based
classifier is trained for each of those binary labels (i.e.,
83 classifiers in total) using the extracted features. For
classification, the feature extractor sends each function’s
features to each of the 83 trained models. The trained
model for each optimization pass then decides if that
optimization was applied to (and modified) each function,
and finally the list of all applied optimization passes is
returned for each individual function in the binary.

USENIX Association 2022 USENIX Annual Technical Conference    857



Static Dynamic
Instruction 2-gram of Opcodes 2-gram of Instructions Register Value Delta

Feature Count Feature Count Feature Count Feature Count
ret 2,626 mov; mov 2,577 pop rbp; ret 1,517 ip=3 2,710
call #T# 2,300 pop; ret 2,413 push rbp; mov rsp rbp 1,059 rip=3 2,710
add #I# rsp 1,688 push; mov 2,069 add #I# rsp; pop rbx 841 eip=3 2,710
push rbp 1,572 mov; call 2,059 mov rsp rbp; sub #I# rsp 814 rsp=-8 2,582
pop rbp 1,527 call; mov 1,680 add #I# rsp; pop rbp 788 spl=-8 2,582

Table 2: Top five selected features for feature types with feature selection for optimization pass Early CSE with a
sample set of 2,780 functions, including 1,390 positive samples and 1,390 negative samples. (Sanitized keywords such
as #TARGET# are abbreviated to only the first letter.)

5 Implementation

We now discuss the implementation details of the various
components shown in Figure 1.

Dataset Generation We implemented the dataset gen-
eration component in Python. The technique takes a
source code repository and compiles it with four lev-
els of optimizations (-O0, -O1, -O2, and -O3). During
compilation, it extracts the ground truth of optimization
passes that modified each function from the compiler
log. After compilation, objdump is used to disassemble
the binary in order to retrieve the instructions of each
function. Instructions are sanitized by removing detailed
memory addresses, call targets, and immediate values (as
discussed in Section 4.1).

We modified the legacy pass manager of the LLVM
compiler [11] in order to retrieve the list of optimization
passes that modifies a function. We made modifications
to the latest development version of LLVM 14 at the
time of this writing (commit #c59ebe4). We added an
option to the existing output flag of LLVM’s legacy pass
manager1 to list the optimization passes that modify a
function or components inside a function (e.g., a loop).

Finally, since we use objdump to disassemble the com-
piled binary files into functions, our tool enables debug-
ging symbols during compilation. However, this is not
a hard requirement for classification as one could use
external tools such as IDA Pro to determine function
boundaries of stripped binaries, but prior efforts found
little difference in outcome between the two tactics [20].

Dynamic Feature Generation As mentioned in Sec-
tion 4.2, PassTell also supports register values extracted

1Recent versions of the LLVM compiler contains two pass man-
agers, and by default, the new pass manager is responsible for all opti-
mization passes before code generation. However, the new pass man-
ager does not contain any utility functions to extract the pass names.
Therefore, we use the flag “-flegacy-pass-manager” to use the legacy
pass manager for all passes, including the ones before code generation.

during execution to complement static features. To do
this, we make use of Zelos [25], a python-based binary
emulator platform that supports x86 (both 32 and 64-bit),
ARM and MIPS architecture emulation. Under the hood,
Zelos makes use of QEMU CPU emulation and imple-
ments system call emulation similar to QEMU usermode,
but CPU and syscall-level hooks make comprehensive
binary instrumentation readily available. Using this tool,
we instrument forced emulation of each function in a bi-
nary and record the changes to register values after each
instruction within function boundaries. To do so, we ex-
tended the emulator to execute a binary, then wait until it
has mapped itself in memory and pause execution. Then,
for each function, the instruction pointer is adjusted to the
function start address before execution resumes. While
executing the function, call instructions are skipped
to ensure that recorded register changes reflect only the
target function, while also avoiding recursion and poten-
tially long call chains. Before emulating each function,
we map a page of memory and fill it with the start ad-
dress of the region. The address of this region is used
as the return address for the target function as well as
for all existing register values that appear to be pointers
to memory, to avoid errors related to reading or writing
unmapped memory.

Feature Extraction and Classification As discussed
in Section 4.3, our approach performs feature selection
for each optimization pass. As such, having a dedicated
feature extraction component that saves all features to
files is highly inefficient. Therefore, we combined the fea-
ture extraction phase for both static and dynamic features
and the classifier into one classifier component.

We implemented our classifier using Python and the
LightGBM library [13]. The classifier iterates through
each optimization pass, selecting and extracting features
and then creating a LGBMClassifier. When training,
the classifier first filters the dataset such that the dataset
is balanced, with the same amount of positive and neg-
ative data. Then, the classifier selects the most popular
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features as described in Section 4.3, extracts both static
and dynamic features, and trains the LGBMClassifier.
When classifying, the classifier extracts the static and
dynamic features and uses the LGBMClassifier to pre-
dict whether the function is modified by this optimization
pass. After the classifier extracts features and performs
classification for all optimization passes, it then merges
the results together to generate the final result, the list of
optimizations applied to the function.

6 Evaluation

The evaluation includes experiments in two directions.
First, we evaluate the effectiveness of our features and our
classifier. In this experiment, we compare PassTell with
NeuralCI [20], a state-of-the-art approach to compiler
configuration identification. To ensure a fair comparison,
we first modified our classifier into a multi-class classifier
to identify the same compiler configuration as NeuralCI,
including the compiler family, the major compiler ver-
sion, and the optimization level, where each combination
is a class. Later, we evaluate our approach in identifying
the individual optimization passes. Overall, our experi-
ments seek to answer the following questions:

RQ1 How does our approach compare to the state-of-the-
art in compiler configuration recovery?

RQ2 Can our approach provide meaningful information
regarding feature significance?

RQ3 How well can we infer individual optimization
passes?

RQ4 Does the inclusion of dynamic features help with
classifying individual passes?

6.1 Compiler Configuration Identification
We use the same benchmark programs as in NeuralCI
[20]. To replicate NeuralCI’s experimental setup, we
combine binaries compiled with -O2 and -O3 optimiza-
tion levels into one class, -OH. As our prototype utilizes
objdump to generate the disassembly for each function,
we only use the unstripped binaries. Tian et al. [20] ob-
served no difference in classification performance be-
tween the stripped and unstripped binaries. Our dataset
thus consist of all dynamically linked unstripped exe-
cutables from the dataset, including binutils, busybox,
coreutils, curl, ffmpeg, git, gsl, libpng, openssl,
postgresql, sqlite, valgrind, vim, zlib, and gdb.

While inspecting the dataset, we discovered that the
dataset is highly unbalanced, with some configurations
having significantly less amount of samples than others.
We note that this issue is not limited to NeuralCI, as other

Figure 2: Confusion matrix of our LightGBM model applied to the
NeuralCI formulation of the compiler classification problem

approaches [2, 15] also do not balance their datasets. To
circumvent this issue, we randomly dropped functions
from certain configurations to ensure that all configura-
tions have the same number of functions. In the end, our
dataset consists of 4,400 functions for each configura-
tion. We split the dataset into an 80% training set and a
20% testing set. Appendix A describes the issue in detail
and includes a comparison of the results of NeuralCI
before and after balancing the dataset. Finally, NeuralCI
includes only unique functions in its dataset, so functions
that are identical across configurations are removed. We
apply the same procedure.

Since Tian et al. [20] do not include all the code used
to construct features from the dataset, we re-implemented
the extraction and abstraction of functions. For extraction,
we use objdump instead of IDA Pro to parse the body of
each function. The abstraction for each function is the
same as done by Tian et al. [20], namely, mnemonics and
register operands are unchanged, base memory addresses
in operands are replaced with the symbol #MEM#, and
immediate values are replaced with the symbol #IMM#.

Experiment Results

For the identification of compiler family, compiler ver-
sion, and optimization level, NeuralCI achieves an av-
erage F-1 score of 76.6%, and our approach achieves
an average F-1 score of 83.2%. Our re-implementation
of NeuralCI produces lower results as reported in their
paper [20]. We attribute the variation to be due to the
correctly balanced dataset. Overall, the results show that
our approach performs better than NeuralCI in identify-
ing the compiler family, the major compiler version, and
optimization level.

Interestingly, both the confusion matrix of our ap-

USENIX Association 2022 USENIX Annual Technical Conference    859



Figure 3: Confusion matrix of NeuralCI in classifying the compiler
family, compiler version, and optimization level

proach (Figure 2) and the confusion matrix of NeuralCI
(Figure 3) show that identifying the optimization level
and the compiler version of binaries compiled with Clang
is more challenging. NeuralCI reports similar findings in
its evaluation [20]. For functions built by GCC and ICC,
both approaches achieve high accuracy in identifying the
compiler family, compiler version, and optimization level.
For this reason and the fact that we modified the LLVM
pass manager to extract pass information, we focus on
Clang2 for the remaining experiments.

6.2 Optimization Pass Identification
Satisfied with the performance and simplicity offered
by PassTell, we focused on tackling the more difficult
cases with Clang. Specifically, the compiler pass dataset
consists of functions from binutils (2.37), coreutils
(9.0), httpd (2.4.51), and sqlite (3.36.0) programs
compiled with Clang 14, using each of -O0, -O1, -O2,
and -O3 optimization levels, generating a total of 149,814
functions in 552 binaries. Then, we balance the dataset
for each pass: for each pass, we randomly select an equal
amount of functions with the pass applied (i.e., positive
samples) and functions without the pass applied (i.e.,
negative samples). We also limit the maximum number
of samples for each pass to 5,000 positive samples and
5,000 negative samples.

Experiment Results

Overall, our approach achieves an average F-1 score of
92.1%. All but three of the 83 passes have an F-1 score
higher than 80%, and the three exceptions all have insuffi-
cient amount of samples (<150 functions). If we only con-

2Clang is a front-end of LLVM and is part of the LLVM infrastruc-
ture.

sider the 73 passes that contain more than 500 samples,
the average F-1 score improves to 93.7%. Table 3 depicts
the results of our approach using only static features. For
brevity, we only list the detailed results of 13 of the 83
passes in total. We pick these 13 passes because they are
optimizations that could affect security [3, 19, 21, 24]:
dead store elimination, dead code elimination, code mo-
tion, tail call optimization, common subexpression elimi-
nation, strength reduction, and peephole optimizations.
For these passes, our approach achieves an average F-1
score of 89.8%. The findings further show that, contrary
to Pizzolotto and Inoue [15]’s statement, even passes that
seem unlikely to be detected, such as dead code elimina-
tion, can be identified with high accuracy.
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Figure 4: Top 15 Features for Aggressive Dead Code Elimination

To understand why our approach works as well as
it does, we inspected the feature significance of some
of the security-affecting passes. We choose to inspect
the feature significance for Aggressive Dead Code
Elimination and Peephole Optimizations because
these two passes offer sufficient descriptions about their
purposes in the code comment of the LLVM compiler’s
source code. Figure 4 shows the top 15 features for
the Aggressive Dead Code Elimination pass and
the feature type of each feature. The description of the
optimization pass in the LLVM compiler’s source code
indicates that this pass considers all code to be dead
unless proven otherwise and removes all the dead in-
structions, especially dead code involving loops. The
top feature in this case checks whether the function up-
dates the function pointer. Clang omits updating the
frame pointer on optimization levels above -O1. Sim-
ilarly, the instruction features nopl #MEM# %rax $rax
#IMM# and cs #TARGET#3 are instructions padding in-
structions without any semantic meaning whose purpose

3This feature is actually a nopw NOP instruction. Due to the dif-
ferent format objdump uses for instructions involving the cs segment
register, this instruction is not parsed correctly. Since segment registers
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Pass Training
Samples

Testing
Samples

Precision
(%)

Recall
(%)

F-1
(%)

Dead Store Elimination 1332 444 86.3 85.8 85.7
Aggressive Dead Code Elimination 1092 364 83.9 83.5 83.4
Bit-Tracking Dead Code Elimination 2512 838 87.6 87.5 87.5
Remove dead machine instructions 7500 2500 88.7 88.6 88.6
Early Machine Loop Invariant Code Motion 7500 2500 93.4 93.3 93.3
Machine Loop Invariant Code Motion 739 247 89.4 89.0 89.0
Loop Invariant Code Motion 7500 2500 90.8 90.6 90.6
Tail Call Elimination 88 30 86.6 86.6 86.6
Machine Common Subexpression Elimination 7500 2500 88.5 88.1 88.1
Early CSE 7500 2500 92.5 92.2 92.2
Early CSE w/ MemorySSA 7500 2500 88.9 88.6 88.6
Loop Strength Reduction 7500 2500 95.4 95.4 95.4
Peephole Optimizations 7500 2500 98.0 98.0 98.0
Average 90.0 89.8 89.8

Table 3: Precision, recall, and F-1 results on security-related passes when using static features.

is to enforce a 16-byte alignment between functions,
and Clang only adds these instructions at -O1 or above.
Since Aggressive Dead Code Elimination is never
applied at -O0, these three features effectively remove
functions with -O0 optimization level.

Four other features among the top 15 features include
various forms of the comp compare instruction, which
commonly appears in loops. This finding matches the
description of the pass. Finally, some of the top features
show significance in the usage of certain registers. Since
this pass is applied before register allocation in the com-
piler pipeline, we speculate that the removal of dead in-
structions reduces the amount of required registers, caus-
ing the register allocator to not use certain registers.
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Figure 5: Top 15 Features for Peephole Optimizations

The top features for Peephole Optimizations show
similar patterns. Figure 5 shows the top 15 features.
The description in the code comments suggests that

are rarely used in 64-bit x86 programs, and we did not find any instruc-
tions utilizing that register other than the padding NOP, we conclude
that this small implementation quirk does not impact our results.

this pass performs four types of optimizations: opti-
mization of sign/zero extension instructions, optimiza-
tion of comparison instructions, optimization of loads,
and optimization of copies and bitcasts. The top fea-
tures show that our classifier mainly capture the second
type of optimizations that optimizes comparison instruc-
tions. Six of the 15 features include a variant of the cmp
compare instruction; four other features include a jump
instruction that usually follows a compare instruction,
and one feature includes a test instruction, which is
functionally similar to a compare instruction. Similar
to Aggressive Dead Code Elimination, the top fea-
tures for Peephole Optimizations also include the
feature that saves the frame pointer in order to detect
-O0 functions.

6.3 Case Study on Optimization-induced
Vulnerabilities

Although prior studies [3, 19, 21, 22, 24] have shown
that compiler optimizations can weaken protections put
in place by safe coding practices, it remained unclear
whether the nullification of protections could in fact lead
to information leakage or other attacks for real-world pro-
grams. Thus, we studied three real-world programs and
examined how protections introduced by programmers
are affected by the dead store elimination optimization:
BusyBox (1.35.0), httpd (2.4.52), and crypto++ (5.6.4).

BusyBox BusyBox is a popular embedded program that
combines many UNIX utilities into a single binary. Some
of the utilities included in BusyBox require password
encryption or authentication, such as the passwd utility,
the cryptpw utility, the built-in HTTP server, and the
built-in FTP server. Therefore, BusyBox’s codebase in-
cludes hashing functions such as MD5 and SHA. When a
utility needs to encrypt a password, the utility would call
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pw_encrypt, which then calls the corresponding MD5,
SHA, or DES encryption functions. The SHA encryption
function, sha_crypt, uses both a local stack object, L,
and heap objects, key_data and salt_data, to store in-
termediate values during the encryption. Listing 1 shows
a snippet of this function. Before the function returns, it
attempts to erase the three objects using memset. How-
ever, at -O3 optimization level, the dead store elimination
optimization removes all three calls to memset. Thus, the
intermediate values remain in the memory after the func-
tion returns even though developers took the necessary
precautions to erase the data.

1 static char * NOINLINE sha_crypt(/*const*/
char *key_data , /*const*/ char *salt_data)

2 {
3 ...
4 struct {
5 ...
6 } L __attribute__((__aligned__(__alignof__

(uint64_t))));
7 ...
8 salt_data = xstrndup(salt_data , salt_len);
9 ...

10 key_data = xstrdup(key_data);
11 ...
12 /* Clear the buffer for the intermediate

result so that people
13 attaching to processes or reading core

dumps cannot get any
14 information. */
15 memset(&L, 0, sizeof(L));
16 memset(key_data , 0, key_len);
17 memset(salt_data , 0, salt_len);
18 free(key_data);
19 free(salt_data);
20 ...
21 return result;
22 }

Listing 1: Code snippet from the sha_crypt function

We tested this program using its cryptpw utility that
prints the hashed password in the format of Linux’s
passwd format from a given password in plain text. The
cryptpw utility calls pw_encrypt to hash the password
text, which calls sha_crypt if SHA mode is selected.
At -O0 optimization level, all three objects that con-
tains intermediate values in sha_crypt (L, key_data
and salt_data) are overwritten to 0 properly at the end
of the function. At -O3 optimization level, however, the
entire value of L is left on the stack at the end of the func-
tion. For the heap objects, the calls to free overwrite the
first 16 bytes of both key_data and salt_data. Since
salt_data is less than 16 bytes, its value cannot be re-
covered. However, in situations where the input plain
text password is longer than 16 characters, the size of
key_data would be larger than 16 bytes. In this case, part
of the intermediate value stored in key_data would per-
sist in the heap memory after its scope. After sha_crypt
returns, pw_encrypt then calls a simple clean up func-

tion and returns to the caller utility. At this point, both the
stack object L and the partial leftover from the heap object
key_data still exist in the memory without being over-
written. This means that if an attacker finds a memory
disclosure vulnerability in the caller utility of BusyBox
before the intermediate values are eventually overwritten
by subsequent functions, then the attacker can recover the
entire value of L and/or the value of key_data after the
first 16 bytes. Since BusyBox includes an HTTP server
and an FTP server that both use pw_encrypt, it would
be possible for an attacker to launch an attack remotely.

We have submitted a bug report for this issue 4.

1 int get_password(struct passwd_ctx *ctx)
2 {
3 char buf[MAX_STRING_LEN + 1];
4 ...
5 else {
6 ...
7 apr_password_get("Re-type new password

: ", buf, &bufsize);
8 if (strcmp(ctx->passwd , buf) != 0) {
9 ctx->errstr = "password

verification error";
10 memset(ctx->passwd , ’\0’, strlen(

ctx->passwd));
11 memset(buf, ’\0’, sizeof(buf));
12 return ERR_PWMISMATCH;
13 }
14 }
15 memset(buf, ’\0’, sizeof(buf));
16 return 0;
17 ...
18 }

Listing 2: Code snippet from the get_password function

Httpd and Crypto++ The HTTP server httpd con-
tains a support utility program, htpasswd, that manages
the files that store usernames and passwords. This pro-
gram includes a function get_password() that reads the
password entered by the user to a local buffer, and stores
the buffer to a passwd_ctx struct. Before it returns, the
function calls memset to erase the buffer such that the
password entered by the user would not stay in the mem-
ory. Listing 2 shows a snippet of this function. Before
any return statement, the function erases the memory of
the buffer, buf, that contains the user-entered password
at line 11 and line 15 in Listsing 2. However, at -O3
optimization level, the dead store elimination optimiza-
tion removes the function call to memset that erases buf,
causing the password in plain text to persist in the stack
memory after get_password() returns, contrary to the
developers’ intention.

We tested this program and discovered that immedi-
ately after the function returns, we could recover the
exact password in plain text in the stack memory. It is

4https://bugs.busybox.net/show_bug.cgi?id=14806
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worth noting that after get_password returns to its caller,
mkhash, the caller later calls other functions, overwriting
the stack memory that contains the password as the stack
frame of get_password is smaller than the stack frame
of subsequent functions. Therefore, if an attacker finds a
memory disclosure vulnerability in mkhash between the
call to get_password and the subsequent function call,
then they can retrieve the password in plain text.
Crypto++, a cryptography library written in C++,

contains a similar issue as htpasswd. The function
CAST256::Base::UncheckedSetKey uses a call to
memset to erase its local variable, kappa, which holds
the hashed key. At -O3 optimization, the dead store elim-
ination optimization removes this call, causing the secret
key to remain in stack memory after the function returns.

For validation purposes, we use the entire compiler
pass dataset (discussed in Section 6.2) as our training
set for BusyBox and crypto++. For httpd, our compiler
pass dataset also contains httpd, albeit a different minor
version, so we exclude all functions in httpd from our
training set. Our classifier correctly identifies the Dead
Store Elimination pass for all three functions at -O3
optimization level. At -O0, the classifier mis-identifies
sha_crypt for BusyBox but identifies the missing of the
pass correctly for httpd and crypto++.

6.4 The Effects of the Dynamic Features

Finally, we evaluate the value of including dynamic fea-
tures. For that, we use the same dataset as in Section 6.2,
but apply additional filtering. Specifically, because our
current implementation of our dynamic feature generator
is unable to generate register features for all functions
in the dataset, we filter the dataset to only include func-
tions that our generator achieved a minimum coverage
threshold. Additionally, we only include passes that were
applied to more than 500 functions. Since our goal is to
evaluate the effects of the dynamic features and not the
coverage of the feature generator itself, we view this as
a reasonable way to understand what impact dynamic
features could have on classification performance.

To compare to the baseline, we ran our approach using
both static features and dynamic features. For the latter,
we experimented with coverage thresholds ranging from
30% to 60%. For these configurations, we used the same
filtered dataset and artificially removed dynamic features
to reach the target coverage.

Experiment Results

Table 4 depicts the results. We only show cases where
the difference in F-1 score is greater than 1%. While the
average F-1 score appears similar regardless of the inclu-
sion of dynamic features, the detailed results tell a more

compelling story. Some passes, such as Remove dead
machine instructions, show a notable decrease in F-
1 score, while others (e.g., Early CSE w/ MemorySSA)
improve by almost 4.0%.
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Figure 6: Top 15 Features for Early CSE w/ MemorySSA with both
static and dynamic features

To better understand the reasons, we examined
the most important featured as deemed by the
LGBMClassifier classifier. Figure 6 shows the top 15
features and the significance of each feature for the Early
CSE w/ MemorySSA pass. The description of this pass
indicates that this pass removes “trivially redundant in-
structions”. The top 15 features include three dynamic
features: eip=7, flags=64, and flags=4. The EIP regis-
ter is the instruction pointer, and the delta of this register
shows information of instruction size, which is not avail-
able in the static features. Similarly, the FLAGS register, as
partial alias of the EFLAGS register, contains various pro-
cessor flags that are implicitly set during arithmetic op-
erations and interrupts. Since this register is only set im-
plicitly as a side effect of instructions, static approaches
cannot extract this information by analyzing the disas-
sembly or the binary code.

An examination of the Rotate Loops pass yields sim-
ilar insights. Here, the top 15 features (Figure 7) include
two dynamic features: flags=-68 and eip=10. These
results indicate that dynamic features, instruction pointer
and processor flags in particular, can provide useful in-
formation in the detection of some optimization passes.

Lastly, we noticed that as we varied the coverage
threshold, a few passes showed a noticeable improve-
ment in F-1 score at higher coverage levels. For these
passes, the result appears to be related to the number of
dynamic features and their significance. For example, for
Early CSE w/ MemorySSA, at 30% coverage, the top 25
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Pass Training
Samples

Testing
Samples

Static
Only
(%)

Static &
Dynamic

(%)
Early CSE w/ MemorySSA 607 203 82.2 86.1
Rotate Loops 400 134 84.2 86.5
Merge disjoint stack slots 598 200 94.4 96.5
Control Flow Optimizer 2,200 734 95.6 97.1
Canonicalize natural loops 396 132 87.9 89.4
Peephole Optimizations 1,297 433 94.9 96.3
Two-Address instruction pass 3,454 1,152 94.9 96.0
Remove Redundant DEBUG_VALUE analysis 1,515 505 88.1 87.1
PostRA Machine Sink 634 212 90.1 89.1
Live DEBUG_VALUE analysis 3,030 1,010 97.4 95.9
Machine Instruction Scheduler 1,303 435 93.3 91.2
Simplify the CFG 1,912 638 91.2 89.0
Remove dead machine instructions 903 301 91.0 86.7
Average for All Passes with at Least 500 Samples 92.9 93.0

Table 4: F-1 scores using only static versus static and dynamic features. The table list only results where the difference
of F-1 score is >= 1%. The coverage threshold is set to >= 70%. Security-related passes are highlighted in dark grey.
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Figure 7: Top 15 Features for Rotate Loops with both static and
dynamic features

features include four dynamic features, and at 70% or
higher, the top 25 features include eight dynamic features.
We posit that future improvements in the way dynamic
features are collected could boost the classification for
more passes, without negatively impacting others.

7 Limitations

Our implementation of the data collection component
only records optimization passes applied to functions
or components within a function (e.g., loops and basic
blocks). Optimization passes applied to larger units such
as modules and call graphs are not studied. Therefore, our
analysis does not cover cross-function optimizations such
as the function inlining. This limitation stems from the
fact that the LLVM compiler does not report the specific

functions modified by a module pass or call graph pass.
Similarly, our data collection component does not support
extracting whole-program optimizations applied at link
time, which could also negatively impact security [21].

In addition, our approach targets only binary files di-
rectly generated by the compiler. Thus, it can not be used
in situations where the binaries are modified after compi-
lation, such as obfuscated binaries or binaries with binary
patches applied. This limitation is not unique to us.

8 Conclusion

We presented a light-weighted approach to the problem
of compiler configuration identification. Our approach
combines a novel technique for feature extraction and a
scalable classifier for performing compiler provenance
recovery. To further improve the accuracy of our classi-
fier, we explored the use of dynamic features extracted
by force-executing functions using a binary emulator.
Overall, our approach shows comparable results as the
state-of-the-art in the original problem of identifying the
compiler family, the compiler version, and the optimiza-
tion level, and pushes the field forward by showing that
one can even identify individual optimization passes.

9 Availability

Our coarse-grained compiler configuration classifier
and our fine-grained compiler pass classifier are avail-
able at https://github.com/zeropointdynamics/
passtell. The balanced compiler configuration dataset
(§6.1), the compiler pass dataset (§6.2), and the com-
piler pass dataset with high dynamic feature coverage
(§6.4) are also available. Furthermore, Zelos, our binary
emulator we use to generate dynamic features, is open
sourced [25].
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A The Unbalanced Dataset
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Figure 8: The distribution of samples in compiler configurations in the
NeuralCI dataset (prior to re-balancing).

Figure 8 shows the number of functions for each con-
figuration in the original dataset of NeuralCI [20], for
64-bit dynamically linked and unstripped executables.
Some configurations, such as Clang 3.8 at -OH optimiza-
tion level, contain significantly less functions than others.
This unbalanced dataset could potentially cause bias in
evaluation. Therefore, we balanced this dataset by ran-
domly removing functions such that all configurations
have the same amount of functions (see Section 6.1).

Dataset Precision Recall F-1
Unbalanced 83.5% 83.5% 83.5%
Balanced 76.6% 76.6% 76.6%

Table 5: Comparison of NeuralCI results using the unbal-
anced dataset and the balanced dataset

To replicate the evaluation of NeuralCI as accurately
as possible, we ran an additional experiment using Neu-

Figure 9: Confusion matrix of NeuralCI using the unbalanced dataset

ralCI with the unbalanced dataset. Table 5 shows the
results of NeuralCI using the unbalanced dataset and the
dataset after we balanced the data size. The results using
the unbalanced dataset show roughly the same results as
reported by Tian et al. [20], with a negligible variation
(<1%). Notice, however, that after balancing the dataset,
NeuralCI’s performance declines. Compared to the con-
fusion matrix of NeuralCI using our balanced dataset
(Figure 3), the confusion matrix of NeuralCI using the
unbalanced dataset (Figure 8) shows drastically better
results for identifying the GCC version at -O0 optimiza-
tion level, likely because GCC 6 has significantly more
samples than GCC 4 at -O0 optimization level. Likewise,
the results for Clang functions also differ.

B Artifact Appendix

Abstract
Our artifacts include the dataset for our experiment in
Section 6.1, 6.2 and 6.4, our coarse-grained compiler con-
figuration classifier for Section 6.1, and our fine-grained
compiler pass classifier for Section 6.2 and Section 6.4.
Our artifacts require a Linux machine (or Windows Sub-
system for Linux) with 32GB of RAM and 16GB of
storage. Since our classifiers use only shallow learning,
a discrete GPU is not required. On our machine with
an AMD Ryzen 7 3700X processor, the coarse-grained
classifier requires about two hours to finish, and the fine-
grained classifier takes about an hour.

Scope
The artifacts allow reproducing our quantitative exper-
iments in Section 6, including coarse-grained compiler
configuration identification (Section 6.1), optimization
pass identification using only static features (Section 6.2),
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and optimization pass identification using both static and
dynamic features (Section 6.4).

Contents
Our artifacts include the following contents:

1. balanced_dataset.csv: The dataset for coarse-
grained compiler configuration classification. As
discussed in Section 6.1, this dataset is a balanced
subset of the dataset used in NeuralCI [20].

2. config_classifier.py: The coarse-grained com-
piler configuration classifier.

3. data.csv: The dataset for fine-grained compiler
pass classification used in Section 6.2.

4. data_dynamic.csv: The dataset for dynamic fea-
ture evaluation used in Section 6.4. As discussed
in Section 6.4, this dataset is a subset of data.csv
that only includes functions whose dynamic feature
coverage are at least 70%.

5. LICENSE: The license of our artifacts.

6. passtell.py: The fine-grained compiler pass clas-
sifier.

7. README.md: Installation and running instructions.

8. requirements.txt: List of required Python li-
braries.

9. static_opcode_features.py: Library module
required for passtell.py.

Hosting
The classifiers and the datasets are available at https:
//github.com/zeropointdynamics/passtell in the
main branch with commit ID 0c88e8d.

Requirements
Our classifiers have the following requirements:

1. A 64-bit Linux machine with at least 32GB of RAM
and 16GB of storage. We have tested our artifacts on
Arch Linux (rolling release, updated in May 2022)
and Ubuntu 20.04 (Windows Subsystem for Linux).

2. Python 3. For Ubuntu and other Linux distributions
that do not have a default python command, setting
the symbolic link from python to python3 is re-
quired. On Ubuntu, this can be done by installing
the python-is-python3 package.

3. Graphviz.

4. Python libraries listed in requirements.txt.
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