
Securely Autograding Cybersecurity Exercises
Using Web Accessible Jupyter Notebooks

Mac Malone
tydeu@cs.unc.edu

University of North Carolina
Chapel Hill, United States

Yicheng Wang
yicheng@cs.unc.edu

University of North Carolina
Chapel Hill, United States

Fabian Monrose
fabian@ece.gatech.edu

Georgia Institute of Technology
Atlanta, United States

ABSTRACT
The rapidly growing demand for computer science expertise com-
bined with the pandemic era forced much education into large
hybrid or fully remote learning environments, placing new empha-
sis on online learning platforms and automatic grading. Jupyter
notebooks are a popular way to teach coding skills, as they provide
an online way to distribute assignments with a low-cost Python
coding environment to students and are also heavily used in data
science, making the skills learned transferrable to the real world.
However, autograding Jupyter notebooks is challenging, and con-
temporary tools have a number of pitfalls that make it difficult to
integrate into a larger learning platform. As such, we implement our
own grading system for Jupyter notebooks within the context of a
broader gamified learning platform used in a cybersecurity course.
Significant emphasis is given to the design, feedback, and security,
as we often wish to introduce vulnerabilities within the student’s
learning environment for them to exploit while simultaneously
protecting the system from misuse. We evaluate the system during
its use in the Fall 2021 semester, discussing both its successes and
failures, and provide transferrable lessons other instructors can use
in their own systems, as the autograding systems used by many
instructors are home-grown.

CCS CONCEPTS
• Security and privacy; • Applied computing → Interactive
learning environments; Distance learning;

KEYWORDS
Automated Assessment; Learning Platform; Cybersecurity; Dis-
tance Learning

ACM Reference Format:
Mac Malone, Yicheng Wang, and Fabian Monrose. 2023. Securely Auto-
grading Cybersecurity Exercises Using Web Accessible Jupyter Notebooks.
In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569862

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569862

1 INTRODUCTION
As our world grows ever more technologically oriented, the demand
for computer science expertise has similarly grown more intense.
Student enrollment in computer science courses across universities
has surged dramatically, leading instructors to teach larger and
larger classes [3]. Simultaneously, the pandemic era forced many
teachers into a remote learning environment, requiring them to
quickly adapt to the new paradigm [1]. Teaching and assessment
now often need to be done online to hundreds of students, plac-
ing new emphasis on learning platforms and automatic grading.
Careful application of these technologies can even improve student
achievement and reduce costs [2, 18, 23].

In computer science, Jupyter notebooks are a convenient one-
stop shop to distribute in-class labs and take-home assignments,
provide students a platform to write and execute code, and collect
and grade submissions [4]. Jupyter notebooks are also popular
professionally, especially in data science [19], providing students
the opportunity to transfer the skills they learn in class to the
real world. However, the standard automated assessment tool for
Jupyter notebooks, nbgrader [8], has a number of pitfalls that make
it difficult to integrate into a broader learning platform [14].

The greater use of technology in student assessment also creates
new opportunities for academic dishonesty and cybersecurity vul-
nerabilities. For example, the number of student requests posted on
the homework sharing site Chegg for five STEM subjects (including
computer science) increased by 196.25% from April-August 2019 to
April-August 2020 (the height of the pandemic) [12]. The cyberse-
curity concerns with automatic graders have also been highlighted
in previous work [10, 24] with Peveler et al. comparing the relative
security and efficiency of different solutions [20].

Our Contributions: We present our design of an automated as-
sessment system for Jupyter notebooks situated within a larger
gamified learning platform and report on its use in a cybersecurity
course at our university. We combine previous work on the types
of automated assessment, grading Jupyter notebooks, giving rich
feedback, and securing such systems into a single approach, provid-
ing a top-to-bottom analysis of the challenges and pitfalls involved
in creating a successful, secure autograding system. What makes
our approach unique is its focus on gamified cybersecurity, which
complicates the security concerns of our system. We often wish to
introduce vulnerabilities within the student’s learning environment
for them to exploit while simultaneously protecting the system from
misuse (be it academic dishonesty or malicious code). In outlining
our contributions, we focus on design principles and transferrable
lessons from our experience that other instructors (cybersecurity
or not) can apply to their own systems, as the autograding systems
used by many instructors are home-grown [24].

165

https://doi.org/10.1145/3545945.3569862
https://doi.org/10.1145/3545945.3569862
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569862&domain=pdf&date_stamp=2023-03-03

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Mac Malone, Yicheng Wang, & Fabian Monrose

2 BACKGROUND
A variety of different technical strategies for autograding assign-
ments are outlined by Wilcox [24]. These can be collected into
three broad categories: black box analysis, source code analysis,
and invasive analysis.

Black box analysis treats student code as a black box, interacting
with the program only through standard process I/O. This can be
done in a number of ways: from simply piping in template input
and comparing the output to some fixed reference (e.g., via diff)
to fully custom test scripts that construct input and analyze output
in complex ways. On the other hand, source code analysis does
not run the student programs at all, but instead statically analyzes
student code for style and functionality. Invasive analysis serves as
something of a midpoint between the two approaches: test code
interacts with student code directly, allowing the grader to use
builtin features of the underlying language to assist in grading.
This can be done via instrumentation (e.g., tracking student code
via provided libraries or by automatically injecting grader code
into the program), through reflection (e.g., using metaprogramming
to list student definitions), or by utilizing and invoking student-
defined abstractions and procedures directly from the test code.

Each approach has strengths and weaknesses, often balancing
power with security concerns. This balancing act means that a
sophisticated approach will often mix all three strategies. For ex-
ample, invasive analysis, while powerful, also poses the greatest
security concerns – as the metaprogramming techniques it utilizes
can also be used by students to find the grader code and reverse
engineer assignment solutions. Thus, extreme care must be taken
not to leak too much information, which often limits what can
be done. In contrast, source code analysis is easily secured, but
makes analyzing runtime behavior infeasible. Conversely, black
box analysis supports runtime analysis but presents all the security
concerns common to any black box unknown program. However, if
run within a secure environment, such concerns can be mitigated.

Securing Grading Systems
One way to secure a student program to run it from within a vir-
tual machine (VM). This almost completely isolates the program
environment from the host machine, providing strong security guar-
antees. However, provisioning VMs is time and resource intensive
and also makes communication between the grader and the student
program extremely difficult.

A simpler solution is to use containers. Containers are a light-
weight alternative to virtual machines, providing a similar level of
isolation of the internal environment from that of the host machine
but with a much lower setup cost. Virtualization is also performed
at the system level, enabling test code and the isolated black box
program to communicate through standard process I/O. However,
spinning up a container still takes time and the isolation provided
by a container, while great for security, also limits the student pro-
gram’s interoperability with other elements of the host machine,
which can be undesirable.

Thus, another alternative solution is to use a jailed sandbox.
With a jailed sandbox, the student program is run in the same
environment as grader but with fewer privileges. For example,
the grader run as root, but runs the student program through a
unprivileged student account. The grader can also use tools like

chroot, rlimit, and seccomp to limit student processes’ access to
the file system, memory and CPU, and system calls, respectively.
However, unlike containers and virtual machines, constructing a
sufficiently secure jailed sandbox is difficult, as it is easy to overlook
some aspect of the environment a student program can improperly
leverage to gain an advantage.

Peveler et al. [20] compare using jailed sandboxes versus Docker
containers for autograding. They demonstrate the feasibility of
both approaches, but note that jailed sandboxes do provide some
performance advantages when one needs to quickly spin up and
tear down many such environments.

Kinds of Feedback
Previous work by Narciss [16] and Keuning et al. [11] outlines many
kinds of feedback a system can provide. There are six common
categories: knowledge about performance, knowledge about re-
sults, knowledge about mistakes, knowledge about task constraints,
knowledge about how to proceed, and knowledge about concepts.

Knowledge about performance (KP) and knowledge about results
(KR) cover simple measures of performance and task completion
(e.g., grades and rubrics). Knowledge about mistakes (KM) includes
test failures, compile errors, runtime errors, style issues, and per-
formance issues. Such information can be limited (e.g., pass/fail
of a meaningfully named test) or detailed (e.g., full stack traces
and error messages). Knowledge about task constraints (KTC) and
knowledge about how to proceed (KH) provides hints to the learner.
KTC hints are reminders that list the steps needed to complete a
task and highlight missing task requirements. KH hints are sugges-
tions that help with error correction and figuring out next steps.
Finally, knowledge about concepts (KC) covers what a tutor might
provide: explanations of the relevant subject matter and examples
illustrating certain concepts. Such help can either be provided when
the student requests it or automatically offered when the system
detects the student is struggling.

An ideal, fully automated feedback system would be able to pro-
vide each kind of feedback, but most systems focus on KP/KR/KM.
One reason for this that the other kinds of feedback usually require
custom scripting on the part of the instructor to identify relevant
mistakes and provide intelligent hints. KM feedback, however, can
be templated via example I/O, error reporting, and specific resource
limits. Futhermore, it is already common in computer science out-
side education in the form of test suites and linters. Also, in the case
of KC, many autograding systems are used within the context of a
conventional class with an instructor that provides such content,
creating little demand for it in autograding systems.

3 APPROACH
Our grading system is built into an online, gamified learning plat-
form we previously designed – Riposte [13] – that we use to teach
the introductory computer security course at our university. We
gamified our learning platform to foster competition (an important
aspect of cybersecurity), motivate students, and improve learning
outcomes [2, 15]. The platform has a number of separate modules
including a missions page (which tracks assignment progress in a
gamified manner with achievements), a leaderboard (which com-
pares students against one another), an embedded 2D action game,
and the focus of this paper – an integrated Jupyter notebook server.

166

Securely Autograding Cybersecurity Exercises Using Web Accessible Jupyter Notebooks SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Infrastructure Setup

Student B’s Web Client

Student B’s VM

Grading Server

Jupyter Notebook Server

Web App

Jupyter Notebook

Game Server

External Logging Service

Anomaly Detection

Main Server

Student A’s Web Client

Student A’s VM

Web App

Jupyter Notebook

Game ClientGame Client

Main Game Server

RESTful Database API

Web Server

Grading Server

Jupyter Notebook Server

Game Server

Figure 1: Overview of the server architecture (best viewed in
color). Boxes with bold services are run together within a
single isolated Docker container. Arrows represent commu-
nications between services. Red solid ones are those that the
students can monitor and are encouraged to explore and ex-
ploit. Yellow solid ones can technically be seen but are not
the focus, and gray dashed ones are invisible to students.

Each student we teach is provisioned a cloud VM. This VM hosts
multiple Docker containers which provide various services for the
student, including the Jupyter notebook environment and the game
server (see Figure 1). We chose this approach because it enables
strong isolation of student activity from their peers and simplifies
the administration of students environments. Alternative solutions,
such as running multiple different student Docker containers on
one machine and/or sharing environments between students do not
easily scale well and create administrative headaches and security
risks. However, our solution is also more resource intensive and
requires substantial existing infrastructure, so in cases were such
an approach is infeasible, it makes sense to adopt such alternatives.

The Docker container with the Jupyter notebook environment
is split in two: a Jupyter notebook server runs under an unprivi-
leged user with the relevant tools, libraries, and Python packages
installed for the tasks we give students, while the grading server
is run separately under root. Once finished with an assignment,
students submit their notebook to the grading server, which runs
their solutions within a jailed sandbox running under the same
unprivileged user they used for development. This sharing of same
system environment was designed to prevent common grading
failures caused by unanticipated incongruities between the student
and the grading environment. However, it also means that students
have more control over the grading environment and can install
packages and tools the instructor may not want them to use. For us,
this is not a problem, as the open-ended, challenge-based, gamified
nature of our assignments allows us to give the students significant
leeway to solve problems their way and minimizes the chances of
pre-packaged solutions being readily available.

To access this environment, students log into the central web
portal and select the Code module tab. This page has an IFrame
that links to the Jupyter notebook server in the environment (see
Figure 2). This is achieved by having the Docker container expose
the server’s ports to the VM and making the VM accessible from
a subdomain of the learning platform’s website. The link to each
student’s Jupyter server is then stored in the platform’s database and
used by the website to generate the IFrame presented to students.
The end result provides the student with a online IDE with no
setup cost on their side, making onboarding students as easy and
pain-free as possible.

Figure 2: A Jupyter notebook in the learning platform.

Grading System
Our grading system has three parts: a per-assignment inline aide,
a general grading server, and a per-assignment grader. The aide
submits a student’s notebook to the grading server, which runs
the assignment grader on it and reports the results to the learning
platform. This pipeline is diagramed in Figure 3.

The aide is an insecure Python module that is accessible to stu-
dents while they are coding. It provides an assortment of quick
checks to help students verify that their code satisfies basic task
requirements before they formally submit their notebook. Its invo-
cations also serve as instrumentation points for the grading server
that students are informed not to delete. Students can submit mul-
tiple times, as previous research shows this to be beneficial [6].

On submission, the grading server converts the notebook into
a Python script using the standard nbconvert tool provided by
Jupyter. This script is then run in the jailed sandbox but with a
different aide module. This module, instead of performing checks,
uses reflection to extract the student’s code into separate distinct
scripts that are augmented to pass command-line input to specific
functions and output their results. Afterward, the assignment’s
individual grader executes these scripts in the jailed sandbox with
different inputs and checks the outputs for correctness.

The assignment grader is a mix of black box and invasive analy-
sis. Invasive analysis (e.g., reflection and instrumentation via the
aide library) is used to split the notebook into multiple tiny scripts

167

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Mac Malone, Yicheng Wang, & Fabian Monrose

Student’s Docker Environment

STUDENT USER

Jupyter
Server

nb.ipynb

nbconvert reflection

nb.py
task(n).py

ROOT

Grading Server Assignment
Grader

(4) run

(1) submit (3) run(2) run analyze IO(5) run &

Student’s PC

Jupyter
Client

(6) record grade

Main Server

Figure 3: Overview of the grading architecture. Students edit
their Jupyter notebook through the web client embedded in
the learning platform.When they are ready for grading, they
(1) submit the notebook to the grading server, which (2) runs
nbconvert to transform it into a single Python file, which is
(3) run by the grading server to produce small tasklet Python
files via reflection in the aide. The server then (4) runs the
assignment grader, which (5) runs and analyzes the tasklets
for correctness and (6) records the grade in themain database.

that can be black box analyzed (in the jailed sandbox) for correct-
ness. The black box analysis ensures user code cannot discover
and exploit the grader code to achieve improper assessments while
the invasive analysis allows students to write relatively free-form
code that is smartly transformed into something more amendable
to black box analysis. What makes the invasive analysis secure here
is that it is run separately from the grader in the jailed sandbox and
it has no knowledge of the grader’s strategies.

Results from the grader are sent to the learning platform to
record and display in its various interfaces – e.g., awarding trophies
on the missions page and ranking up on the leaderboard. Once
a student has completed a goal and received the corresponding
trophy, the goal remains completed even if student breaks their
solution in future submissions. A student may thus be considered
to have completed all tasks even if their final submission does not.

Automated Feedback
The feedback provided by the aide is substantially more detailed
than the grader. The grader just provides basic KP/KR/KM. It notes
which tasks were completed, if there were runtime errors or in-
correct outputs, and assigns an overall grade. This limited detail is
designed to prevent students from using the grader as an oracle to
incrementally fix their code and/or figure out test cases the grader
is using and hard code solutions to them without actual solving the
problem and completing the learning objective of the assignment.

In contrast, the aide provides detailed KM (e.g., what output
was expected versus what was actually produce), general KTC, and

some KH (e.g., hints about edge cases they may have missed or
strategies for improving their solutions to address task constraints).
An experienced student can even use Python’s reflection utilities
to print out the contents of the aide library for themselves and see
what test cases it is using. Solutions, however, are pre-computed to
prevent them from easily discovering the algorithms they need to
write. As the aide’s test cases are just a subset of what the grader
checks, hard coding these solutions will not help the students pass
the grader and thus mitigates the dangers of such leakage.

Other forms of feedback, such as knowledge about concepts
(KC), are provided statically through the assignment instructions
embedded within the notebook or dynamically through lectures
and office hours. In the future, we are considering better integrating
such feedback into the platform itself so that it could function as
independent learning tool separate from the classroom, but that is
not the current focus of our system. Instead, our approach simply
augments existing instruction, it does not fully replace it.

4 CASE STUDY
We have been using the broader learning platform that the grader
is situated in multiple iterations of the undergraduate “Introduc-
tion to Computer Security” class at our university. The course is
higher-level course generally taken by juniors and seniors and some
graduate students. In the Fall 2021 semester, we introduced the new
grader and evaluated its utility as part of the course. In this iteration,
there were 59 students (51 males, 8 females), and the course was
taught in a hybrid in-person / remote environment, with regular
in-person lectures and remote gamified labs.

As an introduction, the course touches on a wide variety of com-
puter security topics and corresponding exercises, including online
and offline password cracking, web client modification, network
traffic inspection, SQL injection, and cryptanalysis. Some of these
exercises (e.g., offline password cracking) are conventional pro-
gramming assignments that make use of our Jupyter notebook and
grader setup. Other assignments (e.g., web client modification) are
fully gamified and do not. Some assignments (e.g., cryptanalysis)
are a mixture, where students write code in the Jupyter notebook
that they then use in the game to earn marks.

Our major research questions this time were: (RQ1) Do students
like our system and does its use impact performance? (RQ2) Do the
grader and aide provide sufficient feedback on student work?

As to RQ1, we believe tha Jupyter notebook is a convenient
coding environment for students and thus hypothesized that stu-
dents will like that Jupyter notebook was used for their assignments
(Hypothesis 1a). We also believe that the new system will have
a positive impact on student performance (Hypothesis 1b) as pre-
vious work [14] has produced similar results. For RQ2, the aide
is designed to provide detailed feedback while the grader is not,
thus we expected that students will find the aide to provide sufficient
feedback and the grader less so but still reasonable (Hypothesis 2a).
As the grader gives immediate feedback as to their success, their
impression of it is likely to be tainted by their final grade so we also
hypothesized that students with a higher grade will find the grader
to provide more sufficient feedback (Hypothesis 2b).

To test these hypotheses and to generally measure the quality
of the course, students are asked to complete a questionnaire after
each assignment, which includes 5-point Likert-scale disagree/agree

168

Securely Autograding Cybersecurity Exercises Using Web Accessible Jupyter Notebooks SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

assessments of their opinions. Of relevance to this research, we
ask whether “[Students] liked that Jupyter notebook was used
for this assignment” and whether “The [aide/grader] gave [them]
sufficient feedback on their work.” Students are also asked to provide
qualitative feedback about their experience. Grades are recorded in
the learning platform on a 5-point letter scale – F, C, B, A, S – where
S means they completed every task for an assignment (including
bonus tasks) and rewards them extra points on the leaderboard.

Results
To answer RQ1 and verify Hypothesis 1a, we found that students
consistently agreed with the statement that they “liked that Jupyter
notebook was used for this assignment” across every exercise and
the final exam. The median was 5 (strongly agree) for each instance,
the mean ranged from 4.19 to 4.44, and the standard deviation
ranged from 0.77 to 1.01. Thus we have strong evidence to suggest
that Hypothesis 1a is true – students do like the use of Jupyter
notebooks in the course.

To verify Hypothesis 1b, we compared the student’s perfor-
mance on an offline password cracking assignment across three
iterations of the course using the metric of percentage of password
cracked (a consistent goal across the different versions of the as-
signment). For the Fall 2021 semester with the new grading system,
the mean was 81.36% and the standard deviation was 12.76%. For
Fall 2020, where we used an older grading system, it was 71.86% /
21.41%, and for Fall 2019, where we did not use Jupyter or automated
grading at all, it was 75.61% / 9.49%. Using a two-sample, unpaired,
unequal variances t-test, we found a statistically significant (p <
0.05) positive difference in the mean between Fall 2021 (new system)
and Fall 2019 (no system), a statistically weak positive difference (p
< 0.15) between Fall 2021 (new system) and Fall 2020 (old system),
and no statistically significant difference (p » 0.15) between Fall
2020 (old system) and Fall 2019 (no system). This provides good
evidence that the Jupyter notebook combined with the new grading
system had a positive impact on student performance, a similar
result to Manzoor et al. [14].

For RQ2, we analyzed the survey responses to whether “The
[aide / grader] gave [students] sufficient feedback on their work”
on the offline password cracking assignment. A histogram of the
responses can be seen in Figure 4. The responses to the aide had a
mean of 3.35 and a standard deviation of 1.2 while the grader had
a mean of 2.75 and and a standard deviation of 1.28. Both had a
median of 3. As can been seen in the figure, the response to the aide
leaned positive while the response to the grader leaned negative.

To formally verify Hypothesis 2a, we performed both a Stu-
dent’s t-test (two tailed, paired) and a Wilcoxon signed-rank test
(matched) comparing the aide and grader responses for the assign-
ment. We did both as Likert scales produce ordinal data and there is
a debate on whether parametric or non-parametric tests are more
appropriate for such data [22]. Both tests showed a statistically
significant difference (p < 0.01), indicating that, as expected, the
aide’s feedback was deemed more sufficient then that of the grader.

For Hypothesis 2b, we computed the correlation between stu-
dents grade (1/F-5/S) and their response to grader (where grade is
the independent variable) using both Pearson’s r (parametric) and
Spearman’s 𝜌 (non-parametric). We found a statistically insignif-
icant (p » 0.15) and slightly negative correlation (r, 𝜌 = -0.069),

0

5

10

15

20

25

Strongly Disagree (1) 2 3 4 Strongly Agree (5)

Grader Aide

The given component gave me sufficient feedback on my work.

Figure 4: Grading System Survey Responses. Students’ views
on whether the grader/aide gave them sufficient feedback.

which was rather surprising, and provides no evidence for Hypoth-
esis 2b, suggesting that students’ grades were not a factor in their
opinion of the grader.

5 DISCUSSION
While we expected students to find the grader’s feedback less suf-
ficient than that of the aide, the response to both were less stellar
than we hoped. However, listening to students’ qualitative reactions
provided us insight into their reasoning, which we discuss here.

Feedback Expectations
Many students expressed confusion about the the grader/aide di-
chotomy – “The difference between the [aide] and the grader was
frustrating,” “the [aide] implements [grading] differently than the
autograder.” When the grader did not mirror the aide, they viewed
the aide as providing insufficient feedback. Furthermore, even stu-
dents who understood the dichotomy still felt that grader could
provide more feedback. For example, “I’d simply say a little more
specificity on output specifications, errors/specification violations, and
reports would be helpful, but I also understand if that compromises
the integrity of the assignment.”

Students provided a number of suggested feedback improve-
ments. For example, they wanted the grader to show the exact
number of passing test cases, rather than the thresholds (e.g., low,
medium, and high) we had decided on. It made them feel better to
see the number slowly climb up as they improved their code rather
than jump up at unknown intervals. As one student stated: “it was
a lot more encouraging to see the percent [in] the [aide] slowly getting
[higher] and mildly discouraging to see ‘Low’ in the grader.” While
such a suggestion is reasonable, others wanted more details. For
example, one student asked for the “[s]pecification of inputs [for]
the grader.” Reading between the lines, some students seemed to
be trying to use the grader as an oracle to improve their code and
were unhappy it was too difficult to do so.

Another indication that the grading system was serving as a
crutch was students’ tendency to never test their code themselves,
but rather to rely entirely on feedback (i.e., KM/KTC/KH) of the
grader and aide – a finding similar to Chen [5]. They often at-
tempted to divine from the grader whether their code had a specific

169

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Mac Malone, Yicheng Wang, & Fabian Monrose

behavior (e.g., worked on particular edge case). We, the instructors,
then had to highlight (e.g., in office hours) that they could just write
a simple test themselves to see if their code was behaving.

Previous research is split on howmuch feedback is too much and
whether the potential for abuse is significant. Some authors note
that greater feedback improves performance and achievement – a
consistent finding in the research [17] – and that this is indicative
of the approach’s success [9]. Others argue that this performance
is merely a by-product of the student relying on the feedback itself
to derive solutions and that they will thus have a hard time accom-
plishing real-world tasks where such feedback is inaccessible. For
example, in Rao et al.’s intervention, 60% of students reported they
had come to rely on the autograder to verify solutions [21]. This
view is further supported by the common finding that students
make significant progress in their learning even when external
feedback is quite impoverished [17].

As our educational topic was cybersecurity, a field where feed-
back on the success or failure of an approach is often minimal,
we leaned towards too little rather than too much feedback. How-
ever, this can, as observed, frustrate students, so areas in which the
real-world applications are more prone to well-structured problems
with rich feedback, it may be wise to provide more. Regardless, how
much feedback is appropriate should be a question an instructor
carefully considers when designing a grading system. One should
also inform students exactly howmuch feedback they should expect
from the system to avoid the confusion we observed.

Resource Limitations
Another major area of concern was resource management. The
assignment in which the grader was analyzed (offline password
cracking) is very sensitive to memory and CPU overuse. Students
found optimizing their programs difficult and the errors provided
by the grader opaque. Some specifically cited “clearer expectations
on the parameters of the memory cutoff” as a pain point. This was
not helped by the grader initially producing just a generic “grader
crashed unexpectedly” message due to its restricted error reporting.

Furthermore, in our setup, the Jupyter notebook is accessed
indirectly through the web and students do not have access to the
machine it is running on. Therefore, resource overuse by student’s
code in the grader or in the notebook can cause the entire system
to hang. This results in the student losing access to their Jupyter
notebook and requires them to wait for the resource monitor to
restart the system before they can resume coding. As solutions can
be both time and memory intensive, it can also take a long while
(tens of minutes) before the problem emerges and resolves itself.

One potential solution is to give the Docker environment a fixed
resource limit that is low enough to allow the VM to continue
handling connections and a UI action can be added to the learn-
ing platform to reset the environment as a student’s last resort.
However, this is still very disruptive to a student’s workflow, so
resource limits within the environment itself can be instituted to
try and avoid this situation. Such limits should ideally be the same
between the grader and the notebook itself to make sure code that
works in the notebook works in the grader. However, generous
limits means the grader can not grade much code in parallel (e.g.,
run multiple test cases simultaneously), reducing turnaround time
(another common complaint of students).

Therefore, when using autograding system for exercises that
may be resource intensive, it is important to carefully consider how
the resources for the grader and the student’s coding environment
are managed. In particular, if reasonable solutions are expected to
be resource intensive, one must carefully consider the trade-offs
between strict limits that can prohibit solutions and generous limits
that making grading slower.

6 RELATEDWORK
Most germane is the approach ofManzoor et al. [14] for autograding
Jupyter notebooks within theWeb-CAT autograding framework [7]
and the Canvas learning management system. Like us, they wish
to incorporate the user-friendly environment of Jupyter within a
larger learning platform but discover a number of pitfalls with the
stock solution for notebook grading, nbgrader [8].

Specifically, while nbgrader does provide a convenient UI for
building assignments and denoting tests, the auto-grading it does
must be in the form of unit tests and has to be applied manually
to the code. Thus, it does not address how notebooks should be
submitted for grading, how its results should be reported to students,
or how to secure the system from misuse, and it still restricts the
types of grading analysis that can be done to student code. Manzoor
et al. address these issues by using nbgrader to create assignments,
Web-CAT to autograde them, and Canvas to collect the results.
Their end product was quite popular, with 75% of students stating
they would recommend others to use a similar approach. They also
observed a statistically significant increase in mean student grades,
indicating automation had a positive effect on student performance.

Wewere encouraged by these results, but could not directly apply
them. Like many other instructors who use home-grown systems
[23], we already had a custom gamified learning platformwe needed
to use (for other assignments in the course, which focus on the
embedded game). Thus, we could not switch to the Web-CAT and
Canvas system used by Manzoor et al. Instead, we took cues from
their design and related research to create our own autograding
framework, which we tailored to our use case. This also allowed
us to focus more on the security of the system, something Manzor
et al. did not address, but was of particular concern to us given our
educational topic of cybersecurity.

7 CONCLUSION
We presented an architecture for an automatic grading system
for web accessible Jupyter notebooks. Our approach highlighted
specific concerns about security and feedback, areas of particular
relevance to our use case of cybersecurity. Upon evaluation, we
found that students like the use of Jupyter notebook and the system
improved their performance, but they had mixed feelings about
the feedback of the grader and aide. Further discussion revealed
that the students wanted to rely more on the grader to help fix
their code, the merits of which are debatable. They also had a hard
time optimizing their code to avoid resource limits, which was
acerbated by the minimal detail initially provided on them. We
hope the lessons we learned and the recommendations we made
can help others avoid such pitfalls in the future and inspire further
work – both inside and outside the specific topic of cybersecurity.

170

Securely Autograding Cybersecurity Exercises Using Web Accessible Jupyter Notebooks SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] Wahab Ali. 2020. Online and remote learning in higher education institutes: A

necessity in light of COVID-19 pandemic. Higher education studies 10, 3 (2020),
16–25. https://eric.ed.gov/?id=EJ1259642

[2] Shurui Bai, Khe Foon Hew, and Biyun Huang. 2020. Does gamification improve
student learning outcome? Evidence from a meta-analysis and synthesis of quali-
tative data in educational contexts. Educational Research Review 30 (2020), 100322.
https://doi.org/10.1016/j.edurev.2020.100322

[3] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation
CS: The Growth of Computer Science. ACM Inroads 8, 2 (May 2017), 44–50.
https://doi.org/10.1145/3084362

[4] Alberto Cardoso, Joaquim Leitão, and César Teixeira. 2019. Using the Jupyter
Notebook as a Tool to Support the Teaching and Learning Processes in Engi-
neering Courses. In The Challenges of the Digital Transformation in Education
(Advances in Intelligent Systems and Computing, Vol. 917), Michael E. Auer and
Thrasyvoulos Tsiatsos (Eds.). Springer, Cham, 227–236. https://doi.org/10.1007/
978-3-030-11935-5_22

[5] P.M. Chen. 2004. An automated feedback system for computer organization
projects. IEEE Transactions on Education 47, 2 (2004), 232–240. https://doi.org/10.
1109/TE.2004.825220

[6] Amy Cook, Alina Zaman, Eric Hicks, Kriangsiri Malasri, and Vinhthuy Phan.
2022. Try That Again! How a Second Attempt on In-Class Coding Problems
Benefits Students in CS1. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE ’22). Association
for Computing Machinery, New York, NY, USA, 509–515. https://doi.org/10.
1145/3478431.3499362

[7] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science Education (Madrid,
Spain) (ITiCSE ’08). Association for Computing Machinery, New York, NY, USA,
328. https://doi.org/10.1145/1384271.1384371

[8] Jessica B. Hamrick. 2016. Creating and Grading IPython/Jupyter Notebook
Assignments with NbGrader. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE
’16). Association for Computing Machinery, New York, NY, USA, 242. https:
//doi.org/10.1145/2839509.2850507

[9] Qiang Hao, David H. Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,
Kai H. Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. 2022.
Towards understanding the effective design of automated formative feedback for
programming assignments. Computer Science Education 32, 1 (2022), 105–127.
https://doi.org/10.1080/08993408.2020.1860408

[10] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing
Machinery, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[11] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a System-
atic Review of Automated Feedback Generation for Programming Exercises. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Com-
puter Science Education (Arequipa, Peru) (ITiCSE ’16). Association for Computing
Machinery, New York, NY, USA, 41–46. https://doi.org/10.1145/2899415.2899422

[12] Thomas Lancaster and Codrin Cotarlan. 2021. Contract cheating by STEM
students through a file sharing website: a Covid-19 pandemic perspective. In-
ternational Journal for Educational Integrity 17, 1 (04 Feb 2021), 3. https:

//doi.org/10.1007/s40979-021-00070-0
[13] Mac Malone, Yicheng Wang, and Fabian Monrose. 2021. An Online Gamified

Learning Platform for Teaching Cybersecurity and More. In Proceedings of the
22st Annual Conference on Information Technology Education (SnowBird, UT, USA)
(SIGITE ’21). Association for Computing Machinery, New York, NY, USA, 29–34.
https://doi.org/10.1145/3450329.3476859

[14] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and Stephen H.
Edwards. 2020. Auto-Grading Jupyter Notebooks. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA, 1139–1144.
https://doi.org/10.1145/3328778.3366947

[15] Cristina Ioana Muntean. 2011. Raising engagement in e-learning through gamifi-
cation. In Proceedings of the 6th International Conference on Virtual Learning ICVL,
Vol. 1. University of Bucharest, Bucharest, Romania, 323–329. http://icvl.eu/2011/
disc/icvl/documente/pdf/met/ICVL_ModelsAndMethodologies_paper42.pdf

[16] Susanne Narciss. 2008. Feedback strategies for interactive learning tasks. In
Handbook of research on educational communications and technology (3rd ed.),
David Jonassen, Michael J. Spector, Marcy Driscoll, M. David Merrill, Jeroen
van Merrienboer, and Marcy P. Driscoll (Eds.). Routledge, New York, NY, USA,
125–143. https://doi.org/10.4324/9780203880869

[17] David J. Nicol and Debra Macfarlane-Dick. 2006. Formative assessment and
self-regulated learning: a model and seven principles of good feedback prac-
tice. Studies in Higher Education 31, 2 (2006), 199–218. https://doi.org/10.1080/
03075070600572090

[18] Edeh Michael Onyema, Nwafor Chika Eucheria, Ezeanya Christiana Uchenna,
Eziokwu Patricia Nkiruka, and Ani Ukamaka Eucheria. 2020. Impact of e-learning
platforms on students’ interest and academic achievement in data structure course.
CCU Journal of Science 1, 1 (2020), 1–16.

[19] Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook of
choice. Nature 563, 7732 (Nov 2018), 145–147. https://www.nature.com/articles/
d41586-018-07196-1

[20] Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers Within an Autograding System. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 139–145. https://doi.org/10.1145/3287324.3287507

[21] Dhananjai M. Rao. 2019. Experiences With Auto-Grading in a Systems Course. In
2019 IEEE Frontiers in Education Conference (FIE) (Covington, KY, USA). Institute
of Electrical and Electronics Engineers, New York, NY, USA, 1–8. https://doi.
org/10.1109/FIE43999.2019.9028450

[22] Gail M. Sullivan and Jr Artino, Anthony R. 2013. Analyzing and Interpreting
Data From Likert-Type Scales. Journal of Graduate Medical Education 5, 4 (12
2013), 541–542. https://doi.org/10.4300/JGME-5-4-18

[23] Chris Wilcox. 2015. The Role of Automation in Undergraduate Computer Science
Education. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for
Computing Machinery, New York, NY, USA, 90–95. https://doi.org/10.1145/
2676723.2677226

[24] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student
Programs. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Com-
putingMachinery, New York, NY, USA, 437–442. https://doi.org/10.1145/2839509.
2844616

171

https://eric.ed.gov/?id=EJ1259642
https://doi.org/10.1016/j.edurev.2020.100322
https://doi.org/10.1145/3084362
https://doi.org/10.1007/978-3-030-11935-5_22
https://doi.org/10.1007/978-3-030-11935-5_22
https://doi.org/10.1109/TE.2004.825220
https://doi.org/10.1109/TE.2004.825220
https://doi.org/10.1145/3478431.3499362
https://doi.org/10.1145/3478431.3499362
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/2839509.2850507
https://doi.org/10.1145/2839509.2850507
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1007/s40979-021-00070-0
https://doi.org/10.1007/s40979-021-00070-0
https://doi.org/10.1145/3450329.3476859
https://doi.org/10.1145/3328778.3366947
http://icvl.eu/2011/disc/icvl/documente/pdf/met/ICVL_ModelsAndMethodologies_paper42.pdf
http://icvl.eu/2011/disc/icvl/documente/pdf/met/ICVL_ModelsAndMethodologies_paper42.pdf
https://doi.org/10.4324/9780203880869
https://doi.org/10.1080/03075070600572090
https://doi.org/10.1080/03075070600572090
https://www.nature.com/articles/d41586-018-07196-1
https://www.nature.com/articles/d41586-018-07196-1
https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1109/FIE43999.2019.9028450
https://doi.org/10.1109/FIE43999.2019.9028450
https://doi.org/10.4300/JGME-5-4-18
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Case Study
	5 Discussion
	6 Related Work
	7 Conclusion
	References

