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ABSTRACT
Understanding the cause, consequences, and severity of a security
bug are critical facets of the overall bug triaging and remediation
process. Unfortunately, diagnosing failures is often a laborious pro-
cess that requires developers to expend significant time and effort.
While solutions have been proposed to help expedite the process of
pinpointing the cause of a security bug, few proposals provide an
explanation along with a diagnosis to make the bug discovery and
triaging process less taxing. Moreover, even in cases where descrip-
tions are provided, they are not guided by classification models that
support precise descriptions of the flaw.

We present an approach that uses static and dynamic analysis
techniques to automatically infer the cause and consequences of a
software crash and present diagnostic information following NIST’s
recently released Bugs Framework taxonomy. Specifically, start-
ing from a crash, we generate a detailed and accessible English
description of the failure along with its weakness types and sever-
ity, thereby easing the burden on developers and security analysts
alike. To evaluate the effectiveness of our approach, we compare our
ability to find fault locations and generate explanations compared
to that of professional software developers by using a benchmark
specifically designed to assist with realistic evaluation of tools in
software engineering. In addition, using 33 real-world vulnerabili-
ties we collected, we show that our approach correctly diagnoses
over 94% of the failures and, in some cases, generates weakness
types that are more specific than those that were originally assigned
by the submitter or National Vulnerability Database analysts. We
also generate initial vulnerability scores that can be used by project
managers to assist with prioritizing bug fixes. On average, the over-
all process takes just over a minute, which is orders of magnitude
faster than what professional developers can do.
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• Security and privacy → Software security engineering.
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1 INTRODUCTION
Due to the negative implications of software breaches, many compa-
nies and open-sourced projects have resorted to automated software
testing techniques (e.g., fuzz testing) to discover vulnerabilities be-
fore adversaries are able to exploit them. That movement has led
to a significant increase in the number of bugs [30] reported over
the past decade. Yet, despite these successes, considerable delays
between discovery and fixing times persist. In particular, developers
often lament about spending an exorbitant amount of time [71, 72]
analyzing bug reports to identify and understand the bug respon-
sible for the failure, independent of the time it takes to assess the
severity of the failure and to fix it.

To expedite bug fixing, a good bug report should contain an
overview of the failure along with its location and a detailed di-
agnosis of the bug causing the failure. In practice, however, bug
reports widely vary in quality, based on the level of expertise of
the bug hunter and the tools they use [9, 85]. Although several
approaches have been proposed to diagnose and locate the cause
of a failure, Hirsch and Hofer [34] found that contemporary so-
lutions often fall short in meeting the needs [40] of developers
because the output of these tools lacks critical information, the con-
tent is ambiguous, and/or the output provides insufficient means
to understand the severity of the vulnerability. In fact, a recent
study of 250 popular projects on GitHub revealed that, on average,
70% of bug reports lacked content needed to successfully fix the
bug [64]. Equally troublesome is the fact that many approaches rely
on the description of a vulnerability to predict its severity, but it is
not uncommon for imprecise descriptions to lead to improper bug
prioritization [18, 19].

But there is good news. Several studies [9, 64, 85] examining
the quality of bug reports have shown that reports that are easier
to read and contain helpful information (e.g., cause, consequence,
and severity) are more likely to get fixed. The dire need for bet-
ter diagnostic tools was highlighted in a recent mixed-method
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study [75] of 386 bug finders and developers that found that “un-
derstandability/readability of fixes is a key concern for developers
and something that should be taken into consideration”. To fill
that void, we propose a pragmatic solution that automatically ➀

diagnoses the cause of a crash and uses the taxonomy from NIST’s
Bugs Framework [14–16] to explain the flaw, ➁ assigns relevant
weakness types (CWEs) to the failure, and ➂ assigns the severity of
the failure using the Common Vulnerability Scoring System (CVSS).
Our specific contributions include:

• We provide an approach, called CrashTalk, that uses static
and dynamic analysis techniques to collect artifacts that are
helpful for understanding the cause of a security bug.

• We use artifacts that map to components expressed in the
Bugs Framework to generate reports that succinctly describe
the reasons for the failure. The framework is a descriptive
model, and to our knowledge, this is the first end-to-end
implementation of a tool that takes in a binary and associated
crashing input and outputs a concise description of the flaw.

• We leverage the components of the Bugs Framework along
with other characteristics of the failure to automatically as-
sign weakness types (CWEs) to the failure, and assign sever-
ity rankings based on the Common Vulnerability Scoring
System (CVSS).

• We perform evaluations (on widely used synthetic data, as
well as on real-world examples we curated from 33 bugs) to
demonstrate how well our approach can explain the cause
of a failure. In addition, we perform evaluations using a
human-generated benchmark for the qualitative evaluation
of automated fault localization, bug diagnosis, and repair
techniques [12].

2 BACKGROUND
Triaging is the process of analyzing software crash reports. The
triaging process typically involves deduplication, prioritization,
and assignment. During the deduplication phase, a triager inspects
crash reports to identify and group duplicates. After deduplication,
each unique crash report is analyzed to determine the underlying
bug that causes the crash, after which the bug is assigned a priority
based on its severity (i.e., potential damage the flaw could cause) [35,
39, 69]. While all stages of the triaging process are important, prior
studies [24, 34, 40] have found that localizing a bug and explaining
its cause is one of themost challenging tasks, especially for memory-
based bugs. As such, developers often heavily rely on a tool’s output
to help diagnose and fix a bug.

2.1 Describing Security Bugs
One of the most widely adopted approaches for describing and
classifying bugs is the Common Weakness Enumeration (CWE)
system. The CWE is a community-developed list of software and
hardware weaknesses along with their description and mitigation
strategies [46]. While helpful to the security community at large,
the CWE is a hierarchical structure with several interdependencies
among the weakness types, many of which are broad and ambigu-
ous [22, 76]. Furthermore, the NIST software assurance group found
that, on its own, the CWE classification is not sufficient, accurate,

and precise enough to serve as the common language for describing
software bugs [14, 76].

An effort to improve the state of the practice is the Bugs Frame-
work (BF) [14–16] by NIST that provides a taxonomic model for
describing software bugs. In essence, it is a structured extension of
the CWE system, facilitating bug-reporting tools to generate more
precise descriptions of software bugs and vulnerabilities.

The Bugs Framework consists of bug classes that represent spe-
cific phases of the execution of a program. Each class is comprised
of a set of operations (e.g., read or write) that are necessary for
the specific phase of execution, the operands for the specific phase
(e.g., memory object), a set of attributes that describe the operation
and operands, a valid cause-consequence relationship, and sites to
describe locations in the source code where a bug can occur [13].
To facilitate precise causal descriptions, each weakness is expressed
using one cause, one operation, and one consequence. For instance,
applying concepts from the Bugs Framework Memory Model [15]
one could track the state of an object (i.e., memory buffer) from
allocation to deallocation, including the operations performed on
the buffer. To help with the labeling of new bugs, NIST released
a GUI-based tool that lets a user manually specify vulnerabilities
using the Bugs Framework language.

In Section 3, we describe howwe instrument memory and extract
the information needed to auto-generate reports with succinct
descriptions of the cause and consequences, as well as infer the
weakness types and severity of a bug.

2.2 Measuring the Quality of Bug Reports
A key factor when assessing the quality of bug reports is readability.
This is supported by the observation of Zimmermann et al. [85] that
bug reports that are easier to read appear to have shorter lifespans
than their counterparts. A commonly used readability metric is the
Flesch Reading Ease score [38, 45], which uses the average number
of words per sentence and the average number of syllables per word
to approximate readability.

We use an extension known as the Flesch-Kindcaid Grade Level
Score that is more suitable for technical texts, and seeks to capture
complexity as well as simplicity of the prose. A higher score indi-
cates that the text includes more specialized vocabulary (e.g., on
exploitation and memory errors) versus less technical content that
may be easier to read by someone at a lower grade level.

Besides measuring the readability of a bug report, it is also impor-
tant to ensure that the description of the failure is specific enough
for developers and security analysts to understand the weakness
classes associated with a failure, allowing them to better analyze
its impact and devise effective mitigation strategies [13, 22]. As
a best practice, NIST and MITRE recommend mapping vulnera-
bilities to the most specific weakness [47, 52]. To better facilitate
the assignment process, analysts with the National Vulnerability
Database (NVD) use a subset of the overall CWEs, known as a slice,
that best represents the distribution of the overall CWEs [52]. The
slice contains both class and base CWE types. The class CWE types
provide a general description of the CWE, while the base CWEs
provide more specific descriptions. Since the BF is a structured
extension of the CWE classification system designed to provide pre-
cise descriptions of bugs and vulnerabilities, CWEs can be assigned
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In Jasper, Missing Code to Verify variable [tccp->maxrlvls ]at line 
jpc_enc.c:620  results in an Inconsistent Value of (728) bytes. Subsequently, 
the Wrong Size (728) derived from [tccp->maxrlvls ] was used to perform a 
sequential reposition of pointer [tccp->prcheightexpns]  at line 
copy_buff.c:20 , which resulted in an Over Bounds Pointer. Finally, using the 
Over Bounds Pointer [tccp->prcheightexpns ] to perform a sequential write 
of moderate data [728 byte(s)] to a heap object of size [720 bytes] at line 
copy_buff.c:20  results in a final Buffer Overflow Memory Error.  This may lead 
to arbitrary code execution or denial of service.

Weakness: CWE-20:Improper Input Validation & CWE-787:Out-of-bounds Write

Initial Severity Rating: HIGH

0x0000555555569c5a
rax min_reg_val_less      
   0x11
mov eax, dword ptr 
   [rbp-0x48]
path rank: 0.96906334

Analyzing root cause for behavior of 
openhost+0x2dd in 55857a272000-ntpq

Recommendation: Add [<SAO<Bool 
argv_21_2416[239:232]==93>>] to 
<CFGENode openhost + 
0x2d80x55857a27db18>

Classification: EXPLOITABLE
Explanation: The target crashed on an access violation at an address 
matching the destination operand of the instruction. This likely indicates a 
write access violation, which means the attacker may control the write 
address and/or value.

CrashTalk

Exploitable

ARCUSAURORA

R
eadability and P

recision
Figure 1: CrashTalk’s (our approach) automatically generated
report versus other tools.

to specific bug classes based on their consequences. To assess the
level of specificity in a bug report, we use the components (e.g.,
cause, consequences, operation) to extract and assign appropriate
weakness types to a failure. In Section 3, we provide details on the
extraction and assignment process.

Unfortunately, we found that reports generated by contempo-
rary tools and existing research prototypes pay little attention
to readability and specificity. To address this gap, we focus on
auto-generating high-quality reports by evaluating their readability
and specificity. Figure 1 shows the explanations from the popular
exploitable [28] tool, the most closely-related research proto-
types AURORA [11] and ARCUS [81], and our approach.

2.3 Evaluating the Severity of the Failure
One of the most widely adopted approaches for evaluating the
severity of a vulnerability is the Common Vulnerability Scoring
System (CVSS), which consists of three metric groups: the Base,
Temporal, and Environmental. The Base metric group describes
the intrinsic characteristics of a vulnerability that remain constant
irrespective of time or user environments [18, 19, 26]. In contrast,
the Temporal metrics capture attributes of the vulnerability that
may change over time but not across user environments. The Envi-
ronmental Metrics serve to adjust the severities identified in both
the Base and Temporal groups based on specific environmental
factors [26]. For our approach, we compute the severity of a fail-
ure using the components expressed in the Base metric group. In
Section 3, we provide details on how we use the components of
the Bugs Framework along with other information to evaluate the
severity of the bug.

3 APPROACH
Operationally, our approach consists of the three phases shown in
Figure 2. The emulation phase ➀ takes a crashing input and associ-
ated program and performs emulation. The crash analysis phase
➁ uses the data collected from the program emulation along with
source code and debugging information to pinpoint the cause of a
crash. Next, the report generation phase ➂ uses information from
the analysis phase together with the Bugs Framework model [13] to
explain the steps leading to the flaw (3A). Afterward, component 3B
computes the readability of the report, and if it is above a predefined
threshold, the report is presented to the user.

3.1 Phase ➀ Emulation
Given a buggy program along with the crashing input, we first
reproduce the bug in an emulated setting. We expand on the data
collected by other approaches to provide an annotated execution
trace that can be used to determine the source of values that lead
to crashes. Our approach is conceptually similar to the dynamic
data flow tracking done by Kemerlis et al. [37] (coined Libdft) in
that we construct data dependencies by recording reads and writes
of memory and registers dynamically, from both instructions and
system calls. Dynamic data flow tracking avoids the challenges of
points-to analysis or reverse execution faced by static data flow
approaches. However, rather than propagating taint, we track con-
crete values that are written to registers and memory, as well as the
assembly instruction responsible for assigning that value, which
we call the "source" of the value. Determining the source of a value
cannot be done by simply tracking changes in the register or mem-
ory values because overwriting a value with an identical value
changes its source. Thus, we need a way to infer the registers that
an instruction will modify.

To determine the register dependencies of instructions in an
architecture-agnostic way, we convert each assembly-level instruc-
tion to QEMU’s Tiny Code Generator (TCG) [8] Intermediate Rep-
resentation (IR). Our decision to use TCG stems from the fact that
QEMU is widely supported and allows us to generate TCG for any
computer architecture it can emulate. Furthermore, the stability and
accuracy of QEMU’s emulation provides a good level of confidence
in the accuracy of the IR it generates.

Additionally, to distinguish between separate executions of an
instruction at the same virtual address, we store data dependencies
relative to the complete instruction trace. In doing so, we attain
full context-sensitivity for our analysis, allowing us to distinguish
exact dependencies even across function boundaries. At present,
we have implemented a set of data flow rules for a subset of TCG in-
structions that cover the most common instructions (e.g., arithmetic
and logical instructions). Our architecture is modular, allowing us
to add new rules on a case-by-case basis (i.e., whenever we en-
counter unsupported instructions while diagnosing the reasons
why a program under scrutiny crashed).

To deal with the fact that certain types of memory corruption
bugs (e.g., heap-buffer overflows, heap use-after-free) may only
produce a crash in the presence of memory sanitizers, we also per-
form memory annotation during emulation. We found it simpler
to implement memory sanitization techniques in the emulation
framework than to integrate existing sanitizers. Specifically, we
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Figure 2: Overall workflow of CrashTalk: the emulation phase ➀, the crash analysis phase ➁, and the report generation phase ➂.
Part 3A uses the Bugs Framework to generate the report. Part 3B checks the readability of the report to ensure it is above a
user-defined threshold.

implement guard pages along with fine-grained memory tracking
to force a crash whenever certain conditions are violated. To de-
tect heap-buffer overflows, we first hook calls to heap memory
allocation routines (e.g., malloc, calloc). We allocate the requested
memory along with additional memory to create a guard buffer
adjacent to the requested memory that will detect read or write
accesses outside the bounds of the allocated memory and trigger a
crash. Similarly, to detect heap use-after-frees we hook the memory
deallocation routine free to keep track of freed memory buffers.
We also implement a guard in the freed memory space to trigger
a crash upon read and write accesses. For double-frees, we force
a crash if the memory passed to the free function was previously
freed. Similarly, we force a crash for invalid frees if the memory
passed to the free function is not previously allocated.

Our sanitizer can track byte-level access of protected regions.
This fine-grained memory tracking allows us to keep track of oper-
ations (e.g., read or write), and instructions that operate on each
allocated heap buffer. We can also customize the size of guard data.
In our implementation, we chose to follow each heap allocation
(call to malloc, calloc, or realloc) with a 16-byte guard buffer that
will identify invalid memory accesses within 16 bytes of the end
of the memory region. A shortcoming is that we can miss invalid
accesses that are more than 16 bytes away from a valid memory
region. For a more robust invalid memory detection mechanism, we
can increase the size of the guard buffers at the cost of increasing
the memory overhead of the memory sanitization module.

3.2 Phase ➁ Analysis
Whenever the program crashes during emulation, the information
available at the time of the crash is passed to this phase along with
the program source code and the debug information. The goal is to
understand the cause of the crash.

To do so, we construct a backward taint graph starting with the
address of the crashing instruction. Using the information recorded
during emulation, we identify the values that are read by that
instruction and used in the operation that resulted in the crash.
We sift through the recorded execution trace to find the sources
of those values, drawing a data dependency between the source
and use. The objective is to construct definitive data dependencies
between two instructions, as opposed to dependencies produced
by context-insensitive data flow algorithms that only produce a set
of possible candidates for data dependencies. That said, not all data

dependencies represent meaningful connections that are useful
for providing context to crashes. A common source of spurious
data dependencies is instructions that reference values on the stack.
Considering the stack pointer as a data dependency of a value on the
stack would be problematic as our approach would then consider
all modifications of the stack pointer (including all prior push and
pop instructions) as data dependencies. This problem is similar to
the taint explosion issue commonly experienced by taint analysis
techniques. In our case, we avoid these spurious connections by
ignoring all data dependencies involving registers containing stack
or base pointers, specifically ESP, EBP, RSP, and RBP. Yet another
source of spurious data dependencies is implicit data dependencies,
or data dependencies involving control flow instructions. In our
current prototype, we do not consider implicit data dependencies.

Given the captured data dependencies, we perform memory
state tracking to pinpoint the source of the value that caused the
crash. We extract the value that caused the violation along with the
corresponding memory address/register from the crash site. We use
the graph to identify where that invalid value was defined and label
that point as a possible cause depending on the type of bug (e.g.,
null-pointer-dereference). We annotate the graph by mapping the
assembly-level instructions to their corresponding line numbers in
the source code by parsing the program debugging information. To
enhance the readability of our generated reports, we also annotate
the graph with the variable names that correspond to each memory
address, information that is also available from program debug
symbols. The annotated data-flow graph, along with the guard
page violation information, is sent to the next stage in the pipeline.

3.3 Phase ➂ Report Generation
The final step uses the aforementioned data to auto-generate a
report. To illustrate how this process works, we use an example,
CVE-2020-27828, that is a heap-based buffer overflow in the JasPer
image manipulation library that arises because of a missing verifi-
cation for a user-specified maximum number of resolutions for an
image. NVD last updated its entry for this bug on 11/06/2023, but
their description still does not offer the level of detail we provide.

Motivating Example: In Figure 3 at line 2a, heap memory is
allocated for a coding parameter structure cp, which also contains
a per-title coding parameter structure tccp. The tccp structure in-
cludes a buffer prcheightexpns of size 33, and an unsigned integer
maxrlvls representing the maximum resolution level. Later in the
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tccp->maxrlvls = atoi(jas_tvparser_getval(tvp));if (!(cp = jas_malloc(sizeof(jpc_enc_cp_t)))) {

tccp = &cp->tccp;
for (rlvlno = 0; rlvlno < tccp->maxrlvls; ++rlvlno) {

tccp->prcheightexpns[rlvlno] = prcheightexpn;

./jasper --input $poc --output  -O numrlvls=40

Over Bounds Pointer

Inconsistent Value

1a

1b

1c

2a

2b

2c

Memory Annotation

Memory Access & 
Memory Annotation

Data FlowData Flow

Bug Class: Data Verification
Cause: Missing Code
Operation: Verify
Consequence: Inconsistent Value
Data State: Entered
Weakness: Improper Input Validation

Output

Input
Artifacts Collected: Dataflow,
operation, memory accesses and
source code.

Bug Class: Memory Addressing
Cause: Wrong Value
Operation: Reposition
Consequence: Over Bounds Pointer
Address State: Heap

Output

Input
Artifacts Collected: Dataflow,
operation, memory accesses and
source code.

Bug Class: Memory Use
Cause: Over Bounds Pointer
Operation: Write
Consequence: Buffer Overflow
Address State: Heap
Weakness: Out-of-Bounds Write

Output

Input

Artifacts Collected: Dataflow,
memory allocation site, operation,
memory accesses and source code.

Figure 3: Dataflow graph containing relevant source lines for
a heap-based buffer overflow vulnerability in JasPer (CVE-
2020-27828). The blue labels denote that we use our dataflow,
memory access, and annotation modules to collect informa-
tion at that stage.

program at line 1b, tccp->maxrlvls is assigned a value specified
by the user (i.e., 40 for this specific bug). Subsequently, maxrlvls
is used at line 1c as the upper bound for the loop. However, there
is no verification between the user-specified maxrlvls at line 1c
and the size of the prcheightexpns buffer. As a result, the pro-
gram crashes at line 2c with an out-of-bounds write. This failure
maps to two improper states, namely (i) when prcheightexpns is
positioned above its upper bounds and (ii) when data is written
to prcheightexpns beyond its upper bounds. In the BF, these im-
proper states correspond to the memory addressing (MAD) bug
class, and memory use (MUS) bug classes, respectively.

Based on the improper state related to theMUS class wemark the
action of writing data to the heap using an out-of-bounds pointer as
the cause and the heap-buffer overflow as a consequence of this state
(see red rectangle in Figure 3). We use the information provided
by the memory annotator along with the source code and debug
information to extract the prerequisite BF components (e.g., opera-
tion, address state). Following that procedure, we use components
of the MAD bug class (see yellow rectangle in Figure 3) to de-
scribe how the previous state came to be. Specifically, we follow the
dataflow and parse the source code to determine the operation (i.e.,
a loop at line 1c) used to sequentially reposition prcheightexpns.
Since tccp->prcheightexpns was positioned over its bounds, we
attribute the cause to a wrong size for repositioning, and the con-
sequence is the over-bounds pointer prcheightexpns. Next, we
check to determine if the overflow resulted from an incorrect mem-
ory allocation (e.g., integer overflow). Since this is not the case in
this scenario, we default to the data verification bug class to signify
a missing verification between tccp->maxrlvls and the size of
tccp->prcheightexpns.

Weakness Types: Our selection of CWE weakness types is guided
by the information provided by both Mitre [47] and the NVD [52].

We assign CWEs for each type of failure from the NVD slice [52].
The type and description of each CWE we select are determined
by specific failure types identified by our analysis component (e.g.,
heap-based buffer overflow), the corresponding operation (read or
write) that led to the failure, the memory space (e.g., stack vs. heap)
involved in the failure, and the components of the Bugs Framework
(e.g., cause, consequence, and attributes). For instance, in the mo-
tivating example, our approach would designate Improper Input
Validation (e.g., CWE-20) as the initial weakness type because the
corresponding Bugs Framework bug class is Data Verification, and
the cause was a missing verification for the entered data. Similarly,
we would identify the final consequence as an out-of-bounds write
(e.g., CWE-787) based on the fact that data was written beyond its
bounds. Furthermore, we explicitly specify that the write occurred
in the heap by examining the memory space of the crash.

Severity: To assess the severity of a failure, we utilize the weak-
ness types, components of the Bugs Framework, and other informa-
tion we extracted during program emulation (e.g., system calls, use-
def chain). We then use the scoring rubric for the CVSS V3.1 [26, 27]
to formulate rules and assign values to the base metric components.
Because the Attack Complexity and Scope components are inher-
ently subjective and require human analysis, we assign default
values as outlined in the CVSS user guide [27]. The Attack Vec-
tor component determines how the vulnerable program can be
exploited (e.g., over a network or via a local application). To de-
termine this value, we analyze the data flow and system calls to
determine whether the program is bound to the network stack or
operates locally. The User Interaction component denotes if the at-
tack requires a user to perform a specific action, such as opening
a specifically crafted file. To determine if this criterion is met, we
again analyze the dataflow to decide if the program accepted data
either from the network or locally. To determine the impacts on
Confidentiality, Integrity, and Availability, we utilize the inferred
weakness types along with extracted causes, consequences, and
attributes of the failure.

For instance, in Figure 3, the program has a high impact on
availability since the out-of-bounds write causes the program to
crash. Additionally, the attacker controls how much data is written
out-of-bound, so the impact on Integrity in this case would also be
high. Further, since the program requires a specially crafted file as
input, the User Interaction field would be set to required, and the
Attack Vector would be set to network because the program is a
library that can be used in networked programs. Once our run-time
system has collected all the information needed to populate values
for each field, we use the CVSS 3.1 equation [26] to compute the
base score metrics and assign a severity level.

3.4 Implementation Details
CrashTalk is implemented utilizing Python-based binary emula-
tion as its foundation. We extended an open-sourced emulation
engine, called zelos [1], to replicate the bug within a simulated
environment. In our context, the functionality of zelos resem-
bles that of the widely employed qemu-user-mode tool in crash
analyses. However, a notable distinction lies in the extensive API
provided by zelos for dynamic code and memory instrumenta-
tion and analysis. Unlike the latter, zelos emulates system calls
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instead of forwarding them to the underlying operating system.
This feature facilitates easy and accurate tracing of dataflows across
the user-kernel boundary. To fulfill our objectives, we also devel-
oped plugins for dataflow analysis and memory annotation, as
illustrated by the components depicted in Figure 2. We note that
alternative solutions for dataflow tracking exist, such as dynamic
binary instrumentation (e.g., Intel PIN, DynamoRio, libdft), com-
prehensive emulated system dataflow tracking (e.g., panda.re), or
other userspace emulators (e.g., angr, qiling, qemu-user-mode).
However, each of these options presents different limitations, such
as performance, compatibility, or accuracy of flow tracking, which
diminish their practicality for our task.

We used the pyelftools Python API to parse the DWARF in-
formation, and the textstat Python API to compute the readability
scores for the reports. The average elapsed time for the emulation,
dataflow reconstruction, and analysis phases for processing the
33 real-world bugs we analyze in §4 are 38, 2.7, and 22.8 seconds
respectively.

4 EVALUATION
To evaluate the effectiveness of our approach, we designed exper-
iments to answer (RQ1): can we accurately collect the necessary
details needed as input for the Bugs Framework, and (RQ2): how
well do our explanations align with diagnoses provided for real-
world bugs?

4.1 RQ1: On Collecting Prerequisite
Information

For our empirical evaluations regarding RQ1, we use a dataset with
2,942 test cases from the Juliet 1.3 suite [10]. We use the Juliet 1.3
suite because it was specifically designed to evaluate automated
security tools and contains many test cases for each final error along
with the ground truth [10]. That dataset has been widely used in
security evaluations (e.g., [31, 44, 74, 81]). Each test case contains
both a flawed (i.e., positive) and a non-flawed (i.e., negative) version.
For each final error type, we randomly select a set of test cases that
cover the possible flow variants defined in the test suite.

Final Error Precision Recall F1 Score

Double-Free 1.00 0.98 0.99
Stack-Buffer Overflow 1.00 1.00 1.00
Heap-Buffer Overflow 1.00 1.00 1.00
Use-After-Free 1.00 0.97 0.98
NULL-Pointer-Dereference 1.00 0.91 0.95

Average 1.00 0.97 0.98

Table 1: Accuracy of failure type identification on the Juliet Dataset.

Specifically, our objective is to determine if we can accurately
identify the final errors (e.g., use-after-free) and the components of
the Bugs Framework (e.g., cause, consequence, attributes, and sites)
associated with the failure. To conduct the experiment, we compile
each flawed and non-flawed test case individually and then execute
them within our emulated environment. We run each experiment
10 times and report the average scores. In all cases in the Juliet
dataset, we can consistently identify the final errors with no false
positives. Table 1 shows that in addition to locating the sites, we

are also able to successfully extract the live variables corresponding
to the cause and consequences. In a few cases, we are not able to
reproduce a crash, resulting in false negatives.

Final Error Precision Recall F1 Score

Bug Class, Operation, Cause 1.00 0.95 0.97
Consequence, Mechanism, Source Code 1.00 0.95 0.97
Site, Address State, Size Kind 1.00 0.95 0.97

Average 1.00 0.95 0.97

Table 2: Accuracy of BF component identification on the Juliet Dataset.

Although the Juliet 1.3 test suite has been widely adopted for
evaluating security tools, the test cases are much simpler than ac-
tual bugs found in real-world programs. This is because the test
suite contains artificially generated code designed to simplify the
evaluation process. As a consequence, the results achieved on the
Juliet test suite may not reflect how well a technique might per-
form on more complex real-world programs [31]. To evaluate our
approach in more realistic settings, we turn to real-world programs.

4.2 RQ2: On the Alignment with Known
Diagnoses of Real-world Errors

To address the fact that the Juliet dataset may not be representative
of flaws in real programs, we conduct experiments on two datasets.
First, we use the DBGBench benchmark introduced by Böhme et al.
[12] which is designed to help with the evaluation of software en-
gineering tools. DBGBench is a human generated benchmark that
includes real errors found in open-sourced C projects alongside
data from debugging sessions with 12 professional software engi-
neers. Böhme et al. [12] show that in the absence of user studies,
the information that was painstakingly collected in their bench-
mark allows for in-depth evaluations that are grounded in practice,
thereby minimizing a number of potentially unrealistic assump-
tions that could be made by tool designers. In particular, they argue
that “DBGBench can be used to evaluate without a user study how
well novel automated tools perform against professional software
developers in the tasks of fault localization, debugging, and repair.”
To that end, Böhme et al. [12] suggest that the output of the tool
under investigation should be compared to the consolidated error
diagnoses derived by human experts.

Developer Diagnosis Our Approach

Bug ID Time (Min) Explanation Time (Min) Diagnosis

find.07b941b1 23.7 Slightly Difficult 0.48 �
find.93623752 50.8 Moderately Difficult 0.42 �
find.c8491c11 31.4 Slightly Difficult 0.41 �
find.dbcb10e9 22.9 Slightly Difficult 0.46 �
grep.3220317a 63.7 Moderately Difficult - -
grep.3c3bdace 67.6 Very Difficult 0.38 �
grep.54d55bba 26.7 Slightly Difficult 0.47 �

Table 3: Crash bugs [12] used. The � symbol denotes a correct diagnosis.

To conduct such an analysis, we evaluated 7 crashing bugs from
DBGBench that we could recreate.1 For each bug, we followed the
1Although the dataset suggests other bugs, find.93623752 included a crashing input
but is not labeled as a crash bug. find.24bf33c0 appears to be mislabeled. In the case
of find.091557f6, we were unable to reproduce the crash described in the report.
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Actual Alignment
Program CVE Failure Severity Assigned CWE Failure Cause Severity CWE

binutils CVE-2006-2362 stack-buffer-overflow v2:High NIST NVD-CWE-Other � � v3:High Improper Input Validation
Out-of-bounds Write

binutils CVE-2017-6966 heap-use-after-free v3:Medium Use After Free � � ↑ Use After Free
binutils CVE-2018-20623 heap-use-after-free v3:Medium Use After Free � � ↑ Use After Free

binutils CVE-2019-9077 heap-buffer-overflow v3:High Out-of-bounds Write � � �
Improper Input Validation

Out-of-bounds Write

jasper CVE-2011-4516 heap-buffer-overflow v2:Medium
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � v3:High Improper Input Validation

Out-of-bounds Write

jasper CVE-2011-4517 heap-buffer-overflow v2:Medium
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � v3:High

Incorrect Calculation of
Buffer Size

Out-of-bounds Write

jasper CVE-2020-27828 heap-buffer-overflow v3:High Improper Input Validation � � �
Improper Input Validation

Out-of-bounds Write

libjpeg-turbo CVE-2012-2806 heap-buffer-overflow v2:Medium
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � v3:High Improper Input Validation

Out-of-bounds Write

libjpeg-turbo CVE-2017-15232 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference

libjpeg-turbo CVE-2018-14498 heap-buffer-overflow v3:Medium Out-of-bounds Read � � �
Improper Input Validation

Out-of-bounds Read

libjpeg-turbo CVE-2018-19664 heap-buffer-overflow v3:Medium Out-of-bounds Read � � �
Improper Input Validation

Out-of-bounds Read

libjpeg-turbo CVE-2020-13790 heap-buffer-overflow v3:High Out-of-bounds Read � � �
Improper Input Validation

Out-of-bounds Read

libming CVE-2018-6358 heap-buffer-overflow v3:High Out-of-bounds Write � � �
Improper Input Validation

Out-of-bounds Write

libtiff CVE-2015-8668 heap-buffer-overflow v3:Critical
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � ↓ Improper Input Validation

Out-of-bounds Read

libtiff CVE-2017-9117 heap-buffer-overflow v3:Critical Out-of-bounds Read � � ↓ Improper Input Validation
Out-of-bounds Read

libxml2 CVE-2015-7498 heap-buffer-overflow v2:Medium
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � � �

libxml2 CVE-2016-1835 heap-use-after-free v3:High
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � � Use After Free

libxml2 CVE-2017-5969 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference
libxml2 CVE-2017-9049 heap-buffer-overflow v3:High Out-of-bounds Read � � � �
libzip CVE-2017-12858 double-free v3:Critical Double Free � � ↓ Double Free

nasm CVE-2004-1287 stack-buffer-overflow v2:High NIST NVD-CWE-Other � � v3:High Improper Input Validation
Out-of-bounds Write

nasm CVE-2017-10686 heap-use-after-free v3:High Use After Free � � � Use After Free
nasm CVE-2018-16517 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference

nasm CVE-2022-44370 heap-buffer-overflow v3:High Out-of-bounds Write � � �
Improper Input Validation

Out-of-bounds Write
openjpeg CVE-2016-7445 null-pointer-dereference v3:High NULL Pointer Dereference � � ↓ NULL Pointer Dereference
openjpeg CVE-2016-10505 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference

openjpeg CVE-2021-3575 heap-buffer-overflow v3:High Out-of-bounds Write � � �
Improper Input Validation

Out-of-bounds Write

pcre CVE-2015-3210 heap-buffer-overflow v3:Critical
Improper Restriction of
Operations within the

Bounds of a Memory Buffer
� � �

Improper Input Validation
Out-of-bounds Write

potrace CVE-2013-7437 heap-buffer-overflow v3:Medium Numeric Errors � � �
Integer Overflow-
or Wraparound

Out-of-bounds Read
w3m CVE-2016-9438 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference
w3m CVE-2016-9443 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference
w3m CVE-2016-9622 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference
w3m CVE-2016-9631 null-pointer-dereference v3:Medium NULL Pointer Dereference � � � NULL Pointer Dereference

Table 4: The � symbol denotes an exact match, the � symbol denotes the we were unable to evaluate a component, ↑ denotes an increase in severity by one level,
and ↓ denotes a reduction in severity by one level. We highlight cases in bold text where our approach derived a more specific CWE assignment.

methodology in Section 3 to extract the causal relationships. With
those relationships extracted, we evaluated how well our approach
is able to identify the type of the final error (e.g., heap-use-after-
free) along with the location at which the violation occurred. Next,
we used BERTScore [83] to determine the semantic similarity be-
tween our output and the consolidated diagnosis of the professional
developers. BertScore [83] is an evaluation metric for text gen-
eration that is designed to correlate well with human judgments
on similarity. In addition, we also manually verified that the ex-
planations were similar. Overall, for 6 of the 7 bugs listed in Table
3, our approach accurately identified the fault locations. In addi-
tion, we achieved an average BERTScore of 86%. On average, our
approach took 26.10 seconds (0.37 minutes) to diagnose a crash

which is a fraction of the time taken to diagnose a “Very Difficult”
bug. Leveraging our approach, developers could save debugging
time and effort. For bug grep.3220317a (considered “Moderately
Difficult”) we were unable to reproduce the crash in the emulator
due to limitations in our prototype.

In keeping with Böhme et al. [12]’s recommendation to utilize
other benchmarks for empirical evaluations, we also curated a
dataset with known real-world bugs found in 12 popular programs.
Each bug maps to a CVE with a crashing input and vulnerable
program version. To gather our dataset, we made sure that (i) the
vulnerable program and crashing input are publicly available and
we can reproduce the bug in our emulated setting, (ii) a known
patch, along with the initial bug report submitted by the bug hunter
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providing details of the failure and the Common Vulnerabilities
and Exposures (CVE) report with the CVSS score and CWE, are
available, (iii) we cover a diverse set of programs and final errors,
(iv) we ensure a diverse representation of functionalities, covering
areas such as image processing, regular expression parsing, and
binary parsing and (v) following the recommendations of Kochhar
et al. [40], we sought variability in program size, measured in lines
of code. We achieved a 94% success rate in reproducing real-world
bugs in our emulated setting as we had to eliminate two bugs:
CVE-2016-10272 for the libtiff program and CVE-2017-6850 for
the jasper program. Table 4 displays our final dataset, including
33 bugs across the 12 programs.

For this experiment, we manually inspected the bug reports,
CVE reports, and bug-fixing commits for all bugs to extract detailed
information concerning the nature of failures, their respective loca-
tions, the underlying causes of these failures, the specific locations
where the causes originated, and the severity of the failure. Next,
we compared how well our approach identified the type of failure
(e.g., use-after-free) along with the location in the source code. In
all cases, our approach correctly identified the failures along with
their locations. To further verify the accuracy of the 22 heap-based
failures, we compared the results (i.e., operation and the number of
bytes read or written) of our custom sanitizer with that obtained
from AddressSanitizer [58] and found that the culprit failure opera-
tions were similar.

Following a similar procedure, we compare the actual cause of
the failure with our diagnosis. Specifically, we examine the first bug
class in our causal relationship chain to determine the initial cause
of the failure (e.g., missing verification), and extract the attributes,
sites (i.e., locations in source code), and variables associated with
the bug class. We extract that information from the submitter’s
report and commits as well. Our results show that we are able to
identify the cause for 31 of the 33 bugs in Table 4. Our failure in the
remaining cases is due to the fact that our current implementation
had difficulty following macros that obscure the exact site.

Next, we compare the Common Vulnerability Scoring System
(CVSS) severity levels generated by our approach for each bug with
those specified in NVD. Specifically, we first focused on 26 out of
the 312 vulnerabilities with V3 severity listed in Table 4, comparing
our CVSS V3 scores with those in the NVD. Our approach arrived at
the same severity level matches for 20 out of the 26 vulnerabilities.
However, the scores for CVE-2015-8668, CVE-2016-7445, CVE-2017-
9117, and CVE-2017-12858 were lower in our approach due to the
requirement for user interaction through a specifically crafted file to
trigger the vulnerability. In the NVD vulnerability report, however,
the user interaction field was marked as not required, explaining the
difference in scores. For the other two vulnerabilities, CVE-2017-
6966 and CVE-2018-20623, our approach rated them asHigh severity
instead of Medium. Although there is an impact on confidentiality,
for some reason, that is not accounted for in those two NVD entries.

Back to the future: Due to CVSS v3 being adopted as the pre-
ferred version by the NVD after 2015, vulnerabilities published
prior to then lack associated V3 scores. Nonetheless, it is important
to reassess these vulnerabilities and assign V3 scores, as they are

2Since we were unable to diagnose the cause for 2 vulnerabilities CVE-2015-7498 and
CVE-2017-9049, we did not include them in this evaluation.

In Jasper, Missing Code to Verify variable [compparms->numrlvls]  at line 
jpc_dec.c:1665  results in an Inconsistent Value of (897) bytes. Subsequently, 
the Wrong Size (897) derived from [compparms->numrlvls]  was used to 
perform a Sequential Reposition of pointer [parheightval]  at line 
jpc_dec.c:1667 , leading to an Over Bounds Pointer. Finally, using the Over 
Bounds Pointer [parheightval]  to perform a sequential write of moderate data 
[897 byte(s)] to the heap object of size 896 at line jpc_dec.c:1667  results in a 
final Buffer Overflow Memory Error. This may lead to arbitrary code execution or 
denial of service.

Weakness: CWE-20:Improper Input Validation & CWE-787:Out-of-bounds Write

Initial Severity Rating: HIGH

Flesch-Kincaid Grade Level Score: 9.6

Bug Hunter’s Report: The attached malformed jpeg2000 file triggers a one 
byte heap overflow in jasper. It was found with american fuzzy lop.

NVD Assigned Weakness: CWE-119: Improper Restriction of Operations within 
the Bounds of a Memory Buffer

NVD Assigned CVSS V2 Severity: MEDIUM

Flesch-Kincaid Grade Level Score: 3.7

Our CVE-2011-4516 Report

CVE-2011-4516 Report  

Figure 4: Example of our auto-generated report with accom-
panying readability score, CWE labels, and initial severity
rating.

occasionally still exploited in the wild. CVE-2011-0997 [7] and CVE-
2004-0113 [29] serve as cases in point. For the 5 vulnerabilities in
our dataset for which only V2 scores were available, we successfully
produced precise V3 scores for all of them. To confirm our results,
we manually analyzed each bug to determine their V3 scores.

4.2.1 Readability and Specificity of Reports. For the bug reports we
generate, the Flesch-Kindcaid Grade Level Score is 8.97 on average.
That high score indicates that our reports contain specific informa-
tion, but these details require the target audience to have a higher
understanding of the subject matter. Figure 4 shows a sample report
compared to that submitted by a bug finder (with a readability score
of 3.7). In that example, the more specialized use of terminology
related to security bugs in our report leads to the higher score of
9.6. Given we target software developers, the fact that more domain
knowledge is needed to comprehend the technical details is really
not an issue — as the more details provided to the developer, the
easier it is to fix the bug.

As high readability is not our primary goal, we evaluate the
specificity of our reports by comparing the weakness types (CWEs)
we assign to the reports following the procedure outlined in Section
3.3 to the CWEs assigned by NVD or the submitter of the vulner-
ability report. The results in Table 4 show that for null-pointer-
dereferences, heap-use-after-free, and double-frees, our CWEs are
in exact alignment with the assigned CWEs. For the CWE names
highlighted in bold in Table 4, we generate CWEs from the NVD
slice that are more specific to the failure. Moreover, for heap-based
and stack-based failures, we express vulnerabilities as a chain of
weakness (i.e., CWEs) linked by causality. For example, these vul-
nerabilities are assigned two CVEs; the first describes the initial
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weakness that causes the failure, and the second describes the fail-
ure itself. This refinement allows an analyst to better understand
the chain of weakness types that lead to failure and devise effective
mitigation strategies [53].

5 RELATEDWORK
Fault localization has been an active area of research due to its
importance in the bug-fixing process and the fact that it is a te-
dious and time-consuming task for developers and software ana-
lysts [34, 39, 63]. Fault localization, sometimes referred to as root
cause analysis, is the process of finding the location of a bug based
on its observed symptoms [63].

Deep learning-based fault localization. In recent years, the field
of deep learning has been showing promising signs for fault local-
ization. As such, some approaches [43, 62, 84] leverage deep neural
networks for fault localization due to their ability to learn code
features and semantics.

Spectrum-based Methods. A number of solutions [2, 11, 51, 56, 60,
82] leverage spectrum-based methods to perform fault localization
by analyzing the deviations between a set of successful and failed
test cases. Blazytko et al. [11] introduced AURORA to identify and
explain the root cause of crashes generated during fuzzing. The root
cause is presented as a list of the top 50 predicates that contributed
to the crash. To identify the root cause, the authors first perform
exploration fuzzing to derive a set of crashing and non-crashing
inputs. Next, they execute the program in an instrumented environ-
ment to derive execution traces for the crashing and non-crashing
inputs. Finally, they analyze the semantic divergence among the
traces to pinpoint the root cause. Similarly, Shen et al. [60] use
statistics to pinpoint the root cause of a crash.

Data Flow Analysis. In contrast to spectrum-basedmethods, other
approaches [21, 48, 77, 78, 81] rely mainly on dataflow analysis to
identify the root cause by performing backward dataflow analysis
from the site of a crash. Cui et al. [21] proposed an approach called
RETracer that identifies the root cause of crashes in production
systems. They define the root cause at function-level granularity
as the first function to propagate a value that causes a crash. To
identify the root cause, the authors reconstruct the program data
flow from a core dump beginning at the crash point and perform
backward taint propagation. However, the data-flow analysis could
fail if the core dump gets corrupted.

Xu et al. [79] later introduced POMP, a technique for identify-
ing the root cause of crashes from core dumps with or without
corrupted data. Specifically, the authors augment the core dump
with a hardware-based instruction trace which they collect after a
crash. Xu et al. [79] uses both artifacts to reconstruct the program
data flow that led to the crash. In this context, the root cause is
given as the minimum assembly-level instructions contributing
to the crash. The authors later proposed extensions [48, 49]) to
improve the data-flow analysis process. Similarly, Cui et al. [20]
proposed REPT, which combines hardware-based instruction traces
and a core dump to reconstruct the program data flow. In contrast
to Xu et al. [79], their objective is to facilitate reverse debugging of
software failures in deployed systems. Unfortunately, in the pres-
ence of instructions that operate in irreversible ways, systems like
theirs that do not track concrete values of registers or memory at

runtime can only approximate the data flow leading to the crash
[21, 48, 77, 78]. Our approach tracks enough information during
execution to determine definitive connections between instructions.

More recently, Yagemann et al. [81] introduced ARCUS and ex-
tensions [80], which combine hardware-based instruction traces
and symbolic execution to identify the root cause of exploits in
production systems. The authors used a custom kernel integrated
with hardware-based instruction tracking capabilities to record ex-
ecution and track the state of memory until a violation is detected.
Subsequent to a violation, the authors perform root cause analy-
sis using symbolic execution and bug class-specific heuristics for
identifying memory corruption vulnerabilities (e.g., stack-overflow,
heap-overflow).

While sharing the goal of identifying and explaining the cause of
a crash, CrashTalk differs by design and its underlying objective.
As shown later on, our approach does not impose requirements
such as hardware-based tracing, a set of successful and failed test
cases, or custom modifications to the kernel. In addition, a common
theme among these works is that they define and present a report
of the root cause from their perspective, which may not align well
with the developer’s needs. They also do not pay attention (like
we do) to the usability of the information they output (i.e., with
respect to readability and specificity). We focus on localizing and
generating a complete bug report for the developer by leveraging
a taxonomic model that precisely and accurately describes a bug.
Furthermore, we also provide an assessment of the severity of the
failure to aid in prioritizing the patch.

Lastly, bug severity assessment is an active area of research
[4, 32, 33, 36, 54, 65, 68] with most approaches leveraging Machine
Learning or Natural Language processing to predict different as-
pects of a bug’s severity. However, in contrast, we do not rely on
the availability of textual descriptions from vulnerability databases
or the availability of labeled bug datasets to train models. Instead,
we collect artifacts and use the Bugs Framework to explain the
reasons for the crash and to provide severity metrics at the time of
diagnosis. In that regard, our output could serve as training data
for approaches that leverage Machine Learning models.

6 LIMITATIONS
Bug fixing is crucial for effective software maintenance, but the
process can consume a large amount of software developers’ time.
To help lessen the burden on developers, numerous studies [3, 5, 6,
17, 23, 25, 42, 50, 59, 66, 73] have studied the relationship between
bug reports and how long it takes to fix the reported flaws. Their
findings suggest that bug reports can sometimes contain valuable
information that helps project managers decide who might be the
appropriate developer to address the reported problem, how to
prioritize the fixes, and how to go about correcting the bug itself.

That said, these seemingly straightforward tasks can be compli-
cated by several factors, including determining whether the bug has
been previously submitted [41], determining whether it is a genuine
bug [55] that can be reproduced, and assessing the severity of the
bug [67]. Hence, we acknowledge that the inclusion of descriptive
elements [64] like ours that help provide valuable context [61, 70]
to the bug fixer is only one factor that can impact bug fixing time.

345



CODASPY ’24, June 19–21, 2024, Porto, Portugal Kedrian James, Kevin Valakuzhy, Kevin Snow, and Fabian Monrose

Nevertheless, solutions like ours address a much-needed capabil-
ity [40, 57, 75].

Lastly, our approach aims to diagnose common memory-related
flaws in C/C++ programs, such as NULL pointer dereferences,
double-frees, use-after-frees, heap-based buffer overflows, and stack-
based buffer overflows. As such, our datasets were limited to these
types of failures. Our operational setting assumes the presence of
source code and debugging information for each program to en-
able the generation of comprehensive bug reports that pinpoint
the cause and consequences of a failure. We believe these are rea-
sonable constraints for software developers or security analysts
looking to understand the cause of a failure and create a patch from
the details we provide.

7 CONCLUSION
We present an end-to-end solution for diagnosing and explaining
the cause of a failure. We show that our output is similar to bug
descriptions from professional software engineers by evaluating
our approach on a benchmark intended for realistic evaluation of
automated debugging tools. We also demonstrate the effectiveness
of our approach by evaluating it on a different set of 33 real-world
bugs that we painstakingly curated. Our results show that we are
able to automatically diagnose over 94% of the vulnerabilities with
precision matching that of human experts. To assist with bug pri-
oritization, we also provide initial ratings of bug severity that are
on par with the manually assigned ratings listed in the National
Vulnerability Database.

8 AVAILABILITY
To promote further enhancements in this important area of secure
software development, our data and code are available at https:
//github.com/kedjames/CrashTalk.
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