
Isomeron: Code Randomization Resilient to
(Just-In-Time) Return-Oriented Programming

Lucas Davi, Christopher Liebchen,
Ahmad-Reza Sadeghi

CASED/Technische Universität Darmstadt, Germany
Email: {lucas.davi,christopher.liebchen,

ahmad.sadeghi}@trust.cased.de

Kevin Z. Snow, Fabian Monrose
Department of Computer Science

University of North Carolina at Chapel Hill, USA
Email: {kzsnow,fabian}@cs.unc.edu

Abstract—Until recently, it was widely believed that code
randomization (such as fine-grained ASLR) can effectively mit-
igate code reuse attacks. However, a recent attack strategy,
dubbed just-in-time return oriented programming (JIT-ROP),
circumvents code randomization by disclosing the (randomized)
content of many memory pages at runtime. In order to remedy
this situation, new and improved code randomization defenses
have been proposed.

The contribution of this paper is twofold: first, we conduct
a security analysis of a recently proposed fine-grained ASLR
scheme that aims at mitigating JIT-ROP based on hiding direct
code references in branch instructions. In particular, we demon-
strate its weaknesses by constructing a novel JIT-ROP attack that
is solely based on exploiting code references residing on the stack
and heap. Our attack stresses that designing code randomization
schemes resilient to memory disclosure is highly challenging.
Second, we present a new and hybrid defense approach, dubbed
Isomeron, that combines code randomization with execution-
path randomization to mitigate conventional ROP and JIT-
ROP attacks. Our reference implementation of Isomeron neither
requires source code nor a static analysis phase. We evaluated its
efficiency based on SPEC benchmarks and discuss its effectiveness
against various kinds of code reuse attacks.

I. INTRODUCTION

Code reuse attacks, such as return-oriented programming
(ROP) [44, 48], are predominant attack techniques extensively
used to exploit vulnerabilities in modern software programs.
ROP attacks hijack the control-flow of an application by
maliciously combining short instruction sequences (gadgets)
residing in shared libraries and the applications executable,
and circumvent protection mechanisms such as data execution
prevention (DEP or W⊕X). Today, ROP remains a widely
used attack strategy for exploiting vulnerabilities of software
programs on commodity PC platforms (e.g., Internet Ex-
plorer [24], Adobe Reader [9]) as well as mobile devices based
on ARM processors (e.g., Safari Browser Jailbreak [17]).

One class of mitigation techniques against return-oriented
programming is address space layout randomization (ASLR),
currently a standard defense technique enabled on commodity
operating systems [22, 36, 52]. ASLR randomizes the base
addresses of code and data segments thereby randomizing
the start addresses of each ROP sequence that the adversary
attempts to invoke. However, due to the low randomization
entropy on 32 bit systems, brute-force attacks can reverse
conventional ASLR [45]. More importantly, a memory dis-
closure vulnerability that reveals runtime addresses (e.g., a
function pointer) can be exploited to bypass ASLR since only
the base address of a segment is randomized. Today, memory
disclosure vulnerabilities are frequently exploited in state-of-
the-art exploits [42].

To overcome the deficiencies of conventional ASLR, a
number of fine-grained ASLR schemes have emerged that ap-
ply randomization to the code structure at different granularity,
e.g., function-level or instruction location [14, 21, 26, 39, 55].
However, as shown recently, a new attack strategy, just-in-
time return-oriented programming (JIT-ROP), can be used to
undermine fine-grained ASLR [47]. It exploits the implicit
assumption of fine-grained ASLR schemes that the adversary
has to perform (offline) static analysis on the target application
to identify useful ROP gadgets. JIT-ROP attacks use a single
leaked runtime address to disassemble the content of hundreds
of memory pages and generate ROP exploits on-the-fly. In fact,
JIT-ROP attacks prominently show the importance of memory
disclosure, posing design challenges on code randomization.

Goal and contributions. Our goal is to tackle the problem
of constructing a runtime software diversifier resilient to tradi-
tional ROP and JIT-ROP attacks. Our main contributions are
as follows:

Bypassing a state-of-the-art randomization scheme: Based
on our analysis of ROP and JIT-ROP attacks, we evaluate
the effectiveness of a recently proposed fine-grained ASLR
scheme, dubbed Oxymoron, claimed to be secure against JIT-
ROP attacks [3]. We developed a novel JIT-ROP attack that
efficiently bypasses Oxymoron. We show the feasibility of our
attack by crafting a real-world exploit that incorporates the
restrictions of the proposed mitigation, but, nevertheless, gains
arbitrary code execution.

Novel runtime diversifier: We present a novel defense, called
Isomeron, that makes fine-grained randomization resilient to
conventional ROP and JIT-ROP attacks. Our mitigation is

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23262

based on the idea of combining execution-path randomization
with code randomization which – as we will show – expo-
nentially reduces the success probability of the adversary to
predict the correct runtime address of a target ROP gadget.

Proof-of-concept and evaluation: We instantiate our solution
Isomeron using a new dynamic binary instrumentation frame-
work which we specifically developed to realize our pairing of
code and execution-path randomization. Our instrumentation
framework (i) instruments all call, return, and jump instructions
that a program execute during its lifetime, (ii) provides the
ability to modify existing and insert new instructions into the
instruction stream of the application at any time, and (iii) does
not require access to the source code or debugging symbols of
an application. We evaluated our prototype of Isomeron based
on SPEC benchmarks, and describe its effectiveness against
different kinds of code reuse attacks.

II. BYPASSING CODE RANDOMIZATION WITH JIT-ROP

In this section, we briefly recall traditional ROP and JIT-
ROP attacks, as well as (fine-grained) ASLR solutions.

A. Basics

The goal of a return-oriented programming (ROP) attacks
is to hijack the intended execution flow of an application and
perform malicious operations without injecting any new code.
To subvert the execution flow, an adversary needs to identify
a vulnerability in the target application. A typical example is
a buffer overflow error on the stack [2] or heap [12]. Such
vulnerabilities allow the adversary to write data beyond the
memory space reserved for a buffer or a variable, so that
critical control-flow information (e.g., a function pointer) can
be overwritten.

In many real-world exploits the attack payload is embedded
in a file that is processed by the target application, e.g., a
HTML file to exploit a browser bug, or a PDF file to attack a
PDF viewer. In a ROP attack, the payload consists of control
data (pointers), where each pointer refers to a code sequence in
the address space of the target application. The adversary then
combines these code sequences to form gadgets where each
gadget is responsible for performing a well-defined task, such
as addition or loading from memory. Typically, the adversary
deploys static analysis tools to identify useful code sequences
before launching the ROP attack.

Each gadget consists of several assembler instructions.
The last instruction is an indirect branch that serves as the
connecting link between the various sequences. Traditionally,
gadgets ending in a return instruction are used [44]: A return
loads the next address off the stack and transfers the control
to that address. The stack pointer is also incremented by one
data word. Hence, the stack pointer plays an important role
in ROP attacks, as it specifies which gadget will be executed
next.1

(Fine-grained) ASLR: A widely-applied defense technique
against code reuse attacks is address space layout randomiza-
tion (ASLR) [22, 36, 52] which randomizes the base addresses

1For this reason, the adversary needs to first invoke a stack pivot sequence
for heap-based ROP attacks. The stack pivot sequence simply loads the address
of the ROP payload into the stack pointer before the ROP attack starts
executing [58].

of code and data segments. However, ASLR is vulnerable to
brute force attacks [45] and memory disclosures [16]. The
latter can be used to reveal important addresses at runtime.
Given a leaked memory address the adversary adjusts each
pointer used in the ROP payload before launching the attack.
To address this problem, several fine-grained ASLR schemes
have been proposed [14, 21, 26, 39, 55]. The main idea is to
randomize the internal structure of an application, for example,
by permuting functions [26], basic blocks [14, 55], or random-
izing the location of each instruction [21]. It was believed that
fine-grained randomization mitigates ROP attacks. However, a
new attack strategy, Just-In-Time ROP (JIT-ROP) showed how
to circumvent fine-grained ASLR with real-world exploits.

B. Just-in-Time Code Reuse

Just-in-time return-oriented programming (JIT-ROP) cir-
cumvents fine-grained ASLR by finding gadgets and gener-
ating the ROP payload at runtime using the scripting environ-
ment of the target application (e.g., a browser or document
viewer). As with many real-world ROP attacks, the disclosure
of a single runtime memory address is sufficient. However,
in contrast to standard ROP attacks, JIT-ROP does not require
the precise knowledge of the code part or function the memory
address points to. It can use any code pointer such as a return
address on the stack to instantiate the attack. Based on that
leaked address, JIT-ROP discloses the content of other memory
pages by recursively searching for pointers to other code pages
and generates the ROP payload at runtime.

The workflow of a JIT-ROP attack is shown in Figure 1.
Here, we assume that fine-grained ASLR has been applied
to each executable module in the address space of the (vul-
nerable) application. First, the adversary exploits a memory
disclosure vulnerability to retrieve the runtime address of a
code pointer ¶. One of the main observations of Snow et al.
[47] is that the disclosed address will reside on a 4KB-aligned
memory page (Page0 in Figure 1). Hence, at runtime, one can
identify the start and end of Page0 ·. Using a disassembler
at runtime, Page0 is then disassembled on-the-fly ¸. The
disassembled page provides 4KB of gadget space ¹, and
more importantly, it is likely that it contains direct branch
instructions to other pages, e.g., a call to Func B º. Since
Func B resides on another memory page (namely Page1),
JIT-ROP can again determine the page start and end, and
disassemble Page1 ». This procedure is repeated as long as
new direct branches pointing to yet undiscovered memory
pages can be identified ¼. Using the disassembled pages, a
runtime gadget finder is then used to identify useful ROP
gadgets (e.g., LOAD, STORE, or an ADD ½). Finally, the ROP
payload is composed based on the discovered ROP gadgets and
a high-level description of the desired functionality provided
by the adversary ¾.

III. BEYOND FINE-GRAINED ASLR: BYPASSING
OXYMORON

Recently, several [3, 4] code randomization schemes have
been proposed that aim at tackling JIT-ROP. However, at the
time of writing, the first and only published approach that
claims to resist JIT-ROP was the work on Oxymoron [3].
Hence, we focus our security analysis in this section on

2

gadget types (load, store, add) necessary to launch a practical
return-oriented programming attack; including a stack pivot
gadget [58]. One important gadget is a system call gadget to
allow interaction with the underlying operating system. The
original JIT-ROP attack leverages for the dynamic loader func-
tions LoadLibrary() and GetProcAddress() allowing
an adversary to invoke any system function of his choice.
However, when the addresses of these two critical functions are
not leaked (as it is the case in our exploit), we need to search
for an alternative way. We tackle this problem by invoking
system calls directly. On Windows 32 bit, this can be done by
loading (i) the system call number into the eax register, (ii) a
pointer to the function arguments into edx, and (iii) invoking
a syscall instruction on our leaked pages. At this point, we
are able to compile any return-oriented programming payload
as our leaked code pages contain all the basic gadget types.

Specifically, we constructed an exploit that invokes the
NtProtectVirtualMemory system call to mark a mem-
ory page where we allocated our shellcode as executable.
We use a simple shellcode, generated by Metasploit [33]
that executes the WinExec() system function to start the
Windows calculator to prove arbitrary code execution.

The last step of our attack is to hijack the execution-flow
of Internet Explorer to invoke our gadget chain. We can do
that simply by exploiting the buffer overflow error once again.
In contrast to the first overflow, where we only overwrote the
string length field (see Figure 3), we overwrite this time the
vtable pointer of our target C++ object, and inject a fake vtable
that contains a pointer to our first gadget. Afterwards, we call
a virtual method of the target C++ object which redirects the
control-flow to our gadget chain (as we manipulated the vtable
pointer).

Lessons learned: In summary, our attack bypasses Oxymoron
as it discovers valid mapped code pages based on code pointers
allocated in data structures (specifically, virtual method point-
ers). As Oxymoron only protects code pointers encoded in
branch instruction on code segments, it cannot protect against
our improved JIT-ROP attack. In order to defend against this
attack, one also needs to protect code pointers allocated in
data structures. Note that our attack is general enough to be
applied to any other memory-related vulnerability in Internet
Explorer, simply due to the fact that Internet Explorer contains
many complex C++ objects with many virtual methods (see
Table I).

IV. ISOMERON: DESIGNING CODE RANDOMIZATION
RESILIENT TO (JIT) ROP

A. Design Decisions

As the first step in designing a diversifier secure against
(JIT) code reuse attacks we evaluated related approaches that
could serve our purpose. One possible solution is to apply
constant re-randomization as proposed by Giuffrida et al.
[18]. However, the adversary could exploit the (small) time
frame between the subsequent randomization to launch the
attack. Another approach is to combine instruction-set ran-
domization (ISR) [25] and fine-grained randomization. ISR
encrypts the application code using a secret key. It aptly
prevents an adversary from disassembling code at runtime
– a crucial step in a just-in-time ROP attack. However, the

original ISR proposal [25] uses XOR which has been shown
to be vulnerable to known-plaintext attacks [50, 56]. Hence,
we replaced XOR by the AES encryption scheme supported by
Intel CPU AES instructions. Unfortunately, this solution turned
out to be impractical, primarily due to the fact that repeated
cryptographic operations induce an unacceptable performance
degradation.

Based on the learned lessons we decided for a new diver-
sifier approach that combines fine-grained randomization of
the program code with the execution path randomization of
the same code. This construction breaks the gadget chain in
both ROP and JIT-ROP attacks. We call our runtime diversifier
Isomeron. Before going into the details of Isomeron, we first
explain the underlying assumptions, threat model, and security
objectives.

B. Assumptions

Non-Executable Memory: We assume that all memory pages
are either marked as executable or writable, thus preventing
code injection attacks. This is a reasonable assumption, as
W⊕X is typically supported on every modern operating system
and enabled by default.

Fine-Grained ASLR: We assume that the underlying system
deploys fine-grained ASLR. Hence, the ROP gadgets contained
in the original code image either (i) reside at a different offset,
(ii) are eliminated by replacing instructions with an equivalent
instruction, or (iii) are broken due to instruction reordering or
register replacement [14, 21, 39, 55]. The diversifier should
ensure that gadgets with the same offset in both binaries are
semantically different.

Trust in the diversifier: We assume that the adversary cannot
tamper with Isomeron. We also assume the availability of a
trusted source of randomness. Despite these assumptions we
will elaborate in Section VI on deploying techniques to protect
Isomeron.

C. Adversary Model

We consider a strong adversary model that is typical for
advanced attacks, such as JIT-ROP:

Exploiting memory vulnerabilities: The adversary has knowl-
edge of a vulnerability in the software running on the platform,
allowing the adversary to instantiate a runtime attack.4

Full memory disclosure: The adversary has access to all
code pages mapped into the address space of an application.5
Full memory disclosure also implies that the adversary can
circumvent fine-grained ASLR protection schemes (which we
already assumed to be deployed on the target system).

Brute forcing: The adversary has a limited number of attempts
for the attack. We assume victims would not re-open a web-
page or document after it has crashed multiple times.

4Reasonable assumption since the NIST vulnerability database shows 760
CVE entries in the buffer error category for 2013.

5In practice, a JIT-ROP adversary can only access pages whose addresses
she disclosed.

5

Execu&on	
 Diversifier	
 Applica'on	
 ADIV	

Address	
 Space	
 of	

Applica'on	
 A	

Applica'on	
 A	

Func_ADIV:	

	
 	
 INS2	

	
 	
 CALL	
 Func_BDIV	

	
 	
 INS1	

	
 …	

Func_BDIV:	

	
 	
 RET	

	

Func_A:	

	
 	
 INS1	

	
 	
 CALL	
 Func_B	

	
 	
 INS2	

	
 …	

Func_B:	

	
 	
 RET	

	

Coin	
 Flip	
 	

b	
 	
 	
 	
 {0,1}	
 |	
 rand();	
 Distance:=	
 Start(ADIV)	
 –	
 Start(A)	

If	
 b==1	
 &	
 Origin==A	
 	
 	
 	
 → 	
 Offset:=	
 Distance	

Else	
 if	
 b==1	
 &	
 Origin==ADIV	
 → 	
 Offset:=	
 0	

Else	
 if	
 b==0	
 &	
 Origin==A	
 	
 → 	
 Offset:=	
 0	

Else	
 if	
 b==0	
 &	
 Origin==ADIV	
 → 	
 Offset:=	
 -­‐(Distance)	

Look-­‐Up	
 Target	

Address	

EIP:=	
 Target	
 +	
 Offset	

Record	
 Decision:	

(Stack	
 Pointer,	
 b)	

Original	

Binary	

Iden'fy	
 Origin:	

A	
 or	
 ADIV	

Diversifier	
 ENTRY	

Diversifier	
 EXIT	

Diversifier	

Decisions	
 D

1	

2	

3	
 4	

5	

6	

8	

Let	
 Return	
 Address	

point	
 to	
 A	
 regardless	
 if	

Origin	
 A	
 or	
 ADIV	

6	

7	

∈

(a) Function calls

Execu&on	
 Diversifier	
 Applica'on	
 ADIV	

Address	
 Space	
 of	

Applica'on	
 A	

Applica'on	
 A	

Func_ADIV:	

	
 	
 INS2	

	
 	
 CALL	
 Func_BDIV	

	
 	
 INS1	

	
 …	

Func_BDIV:	

	
 	
 RET	

	

Func_A:	

	
 	
 INS1	

	
 	
 CALL	
 Func_B	

	
 	
 INS2	

	
 …	

Func_B:	

	
 	
 RET	

	

Look-­‐Up	
 Decision	
 at	

current	
 Stack	
 Pointer:	

b	
 	
 	
 	
 {0,1}	

If	
 b==0	
 → 	
 EIP:=	
 Return	
 Address	

If	
 b==1	
 → 	
 EIP:=	
 Return	
 Address	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 (Start(ADIV)-­‐	

Start(A))	

Diversifier	
 ENTRY	

Diversifier	
 EXIT	

Diversifier	

Decisions	

1	

2	
 3	

Diversifier	

Decisions	
 D

∈

(b) Function returns

Fig. 6: Details of function call and return hooking of Isomeron.

Step 2: Twin diversification (Isomer). In the offline or load-
time phase, we apply fine-grained ASLR to the executable
modules of an application. The level of fine-grained ASLR
is configurable, but we require and ensure that each possible
ROP sequence and gadget is placed at a different address.
In other words, a ROP sequence should never reside at
the same offset in the original and diversified version. This
requirement is fulfilled by all of the proposed fine-grained
ASLR solutions [14, 21, 26, 39, 55]. Depending on the design
of the chosen fine-grained ASLR solution, the diversification
is performed once; either within a static offline phase (as
done in [21, 26, 39, 55]), or completely at load-time of the
application [14].

Step 3: Coin-flip instrumentation. We perform the execution
randomization at the granularity of function calls. Our scheme
randomly flips a coin, and based on the outcome, it continues
the execution in either the diversified or the original applica-
tion. This random decision is made whenever a function call
occurs. Our execution diversifier D ensures that the function is
completely executed either from the original A or diversified
code image Adiv . The rationale behind performing the random
decision on function level granularity is that we can only
preserve the original semantics of the application when a
function is entirely executed from either the original or the
diversified address space. Note that fine-grained ASLR is
only performed once (either offline or at load-time), while
the execution path randomization is performed throughout the
entire program execution, each time a function is called.

Figure 6(a) and 6(b) show the instrumentation framework
for function calls and function returns. Subsequently, we
describe the specifics of each. For brevity, we use an example
that consists of only two functions: Func A() and Func B().
The latter function only contains the x86 return instruction
(RET), while the former one contains two instructions (INS1

and INS2), and a function call to Func B(). The only code
diversification we apply in this example is that INS1 and
INS2 are exchanged.

1) Instrumentation of direct function calls: First, we need
to ensure that we take control over the execution flow when
a function call occurs. For this, we perform binary rewriting
on the code, before it is executed. Specifically, we overwrite
each function call with a call to the execution diversifier
D. We describe the implementation details of our rewriting
approach in Section V. For the moment we assume an in-
memory rewriter allowing us to hook into function calls.

For our running example, the call to Func B() will either
be initiated in the original or diversified version of Func A().
Since the call has been instrumented in any case, the control-
flow will hand-over control to the diversifier D (¶). Moreover,
since the (instrumented) function call will automatically push
the return address onto the stack, D can easily identify from
where the function has been invoked. Note that the memory
layout of the running application is known to D (·).

Next, we perform a coin flip (¸) to decide which version
of Func_B() is going to be executed. At this point, D
also determines the memory offset between the diversified
and original images. This offset is used to quickly calculate6

the function address during the execution path randomization
process. Based on the origin and the outcome of the coin toss,
we calculate the offset to be added to the instruction pointer. In
general, the offset is zero if execution should continue on the
image from where the function call originates. If the program
image is switched from original to diversified or vice-versa, the
offset will be the distance between the two program images.

In steps ¹ and º, we retrieve the original target address

6This calculation needs only to be performed once and can be retrieved in
future coin flip rounds.

7

of the call (using the original binary), and add the offset
(calculated in ¸) to determine the new value of the instruction
pointer (on x86: eip). In addition, we ensure that the return
address on the stack always points to the original program
modules (»). Otherwise, an adversary could determine which
functions are currently executing by inspecting the stack. We
also record each random decision of the diversifier D to ensure
that function returns are returning to their caller in the correct
program version. This information is only accessible to D (¼).
Finally, D redirects the control-flow to Func B() (½).

2) Instrumentation of function returns: Function returns
are instrumented similarly to function calls. The diversifier D
takes over the control whenever the program issues a return
instruction. Next, the current return address is read from the
stack, and used to determine the correct origin, which is
adjusted if necessary. Recall that the return address always
points to the original image. Since previous decisions are
unknown to the adversary, she can only guess whether the
return address is adjusted or not. This knowledge is crucial
for an adversary; in our example, either INS1 or INS2 will
be executed next.

3) Instrumentation of indirect jumps and calls: Indirect
branches are handled similarly to direct branches. The dif-
ference is that indirect branches can have multiple branch
targets. Hence, we calculate the destination address at runtime
and check if the target address is included in the relocation
information. This limits potential misuses. We discuss the
details in Section VI. The relocation information are used by
Windows to implement ASLR and are therefore almost always
available7.

V. IMPLEMENTATION OF ISOMERON

Our design, as presented in Section IV, can be implemented
in two ways: As a compiler extension or through binary
instrumentation. While the former has advantages in terms of
performance and completeness, the latter is compatible with
legacy applications. For our proof of concept, we choose to
use dynamic binary instrumentation.

A. Dynamic Binary Instrumentation

Dynamic binary instrumentation (DBI) [37] can be seen
as a form of process virtualization with the goal to maintain
control over the executed code. To achieve this goal, all control
transferring instructions are modified (translated) such that
the dynamic binary instrumentation software controls which
instruction is executed next. Dynamic binary instrumentation
has been used for runtime monitoring [35, 54] and policy
enforcement [11, 13]. It fetches the code on a basic block
granularity and translates the instructions inside a basic block
to meet the desired functionality. The translated instructions
are emitted in a basic block cache (BBCache), which is an
executable area of the memory that contains all translated basic
blocks. Translation in this context means that the framework
modifies the instructions according to the purpose of the
intended instrumentation. At the end of a translated basic block

7In order to avoid emission of relocation information, a developer would
need to explicitly disable ASLR support when compiling with Microsoft’s
standard compilers.

an exit stub is emitted. The exit stub saves the current execu-
tion context and transfers the control to the instrumentation
framework, which contains the runtime information needed to
calculate the address of the next basic block.

In contrast to static binary instrumentation, dynamic binary
instrumentation has access to information which are calculated
at runtime (e.g., pointers). We decided to use the dynamic
approach, because it has several advantages with respect to
our design goals: first, it covers all (in)direct branches as it
instruments the code right before it is executed. This also cov-
ers just-in-time generated code. Second, our solution requires
the insertion of new instructions which inevitably changes the
location of the original instructions. Hence, all references to
a moved instruction must be adjusted throughout the entire
binary. The dynamic approach allows us to keep track of these
changes and adjust references accordingly. Lastly, we require
our solution to be compatible with legacy applications. Thus,
we cannot assume access to source code or debugging symbols
which are required to perform a reasonable static analysis.

Orignal Binary (nx)

BB #1 BB #2 BB #3 BB #4 BB #5 BB #N

DBI with Isomeron

Instrumentation Cache #1

BB #4 BB #1 BB #5 BB #6 BB #3

Instrumentation Cache #2

BB #4 BB #1 BB #5 BB #6 BB #3

Analyzer

Translator

Execution Diversifier

Exit Stub
Handler

fetch

emit

Fig. 7: Components used in our dynamic binary
instrumentation framework.

The informed reader might realize that there are several
well-known instrumentation frameworks (e.g., DynamoRIO [6]
and PIN [31]) which we could have used. Unfortunately,
these frameworks are not suitable for our purposes as we
require the ability to emit (generate) differently instrumented
copies of the same code. While DynamoRIO’s sources are
available, the large optimized code base is not practical for
drastic architectural changes, such as introducing a second
code cache. Other open source frameworks are only available
for Linux [41, 51]. Next, we highlight the challenges we
encountered, but before doing so, we describe the start-up
process and explain how new basic blocks are discovered.

8

B. Implementation of our Dynamic Binary Instrumentation
Framework

The design of dynamic binary instrumentation frameworks
is similar across different implementations and illustrated in
Figure 7. In the following we will explain how our framework
is instantiated. We fetch basic blocks from the original binary
(marked as non-executable), analyze, translate and emit them
into a code cache. One major difference to existing instru-
mentation frameworks is our translator emits an additional
instrumented, diversified basic block into a second code cache.
Further the execution path diversifier switches the execution
between both code caches.

1) Setup: We implemented our instrumentation framework
as a dynamic link library (DLL). To instrument a program, we
inject our library into the target process. We created a loader
that starts the target application as a suspended process. This
means the Windows loader stops the process creation right
before the execution of the main application code is started.
This gives us the opportunity to inject our library and take
control over the process, i.e., to start the instrumentation of the
first basic block and to initialize necessary code/data structures.

2) Initialization of code and data: One of the main chal-
lenges of dynamic binary instrumentation is thread support.
Each thread needs its own memory region to store information,
e.g., during the translation or for the applied instrumentation
(see Figure 6(a)). Further, each thread must be able to access
its memory region quickly due to performance reasons. There
are different strategies to implement this. One obvious strategy
is to use the Thread Local Storage, which is provided
by the operating system. However, dynamic binary instrumen-
tation should minimize the interaction between the framework
and the operating system at runtime. Another strategy is to
store a pointer to the thread’s private memory in one of the
registers. This is called register stealing and works well on
architectures with many general-purpose registers, but since
x86 provides only a few of these registers, register stealing has
a negative impact on performance [6]. For our implementation,
we chose to access the thread’s private memory through
hardcoded addresses. Hence, if a new thread is started we
first create a copy of each function that requires access to
the thread’s private memory area and then adjust the reference
of every instruction which accesses the private memory.

3) Basic Block translation: As mentioned above, our loader
stops the process right before the first basic block is executed.
Hence, we start our instrumentation with this particular basic
block. To instrument a basic block, we first have to disassemble
and analyze its code. While creating the correct disassembly
for an entire binary is error-prone, disassembling a basic block
is not. For our implementation we chose libdasm [30], a
lightweight disassembler that requires no external libraries.
Most instructions are copied directly and without any modifica-
tions into the instrumentation cache. However, there are three
cases at which we apply modifications during the translation.

Control flow instructions: For simplicity, unless a basic block
is already translated, we emit an exit stub on each control flow
altering instruction (calls/jumps/returns). It is the responsibility
of the exit stub to save the state of the current execution and
transfer the execution to our instrumentation framework, which
then can use the saved state to determine the next basic block.

After the translation of the next basic block, the exit stub
is replaced with code that transfers control to the execution
diversifier, in the case of calls and returns. Otherwise, it is
replaced with a direct jump to the next basic block within the
current instrumentation cache.

Unaligned gadgets: Isomeron needs to ensure that its exe-
cution diversifier is correctly executed. Since it instruments
only intended instructions, we need to prevent the adversary
from diverting the execution flow to instructions that are not
instrumented. To handle unaligned instructions, we search for
instructions inside a basic block that contain byte values that
could be exploited by an adversary as an unaligned gadget
(e.g., a C3 byte inside a MOV instruction, which could be
interpreted as a return instruction). If such an instruction is
found, we insert alignment instructions which ensure that
these bytes can only be interpreted as part of the intended
instruction. Another way to avoid unaligned gadgets is to
enforce alignment for branch destination addresses [32].

Path and Code diversification: The main focus of this paper
is the implementation of execution path randomization. There-
fore, we redirect call and return instructions to our execution
diversifier which we explain subsequently. Our framework
allows to use code randomization as a black box. Hence,
the translator applies randomization of a proper fine-grained
randomization scheme (c.f. Section IV-F) before emitting the
instrumented code into the diversified code cache.

4) Execution diversifier: Our execution diversifier imple-
mentation follows the description given in Section IV. For
efficiency, we implemented separate handlers for direct/indirect
calls and returns. In order to preserve the semantics of the
function, jumps are never randomized and hence, are not
target of the execution diversifier. Nevertheless, we apply
certain limitations to indirect jumps as discussed in Section IV
and VII. For efficiency the source for our random decision is a
pre-allocated area of memory initialized with random values.
This source can be re-randomized in certain intervals to prevent
an adversary from using side-channels to disclose any of the
random bits. The coin flip results are saved on an isolated
memory location which is allocated for each thread.

VI. SECURITY CONSIDERATIONS

We elaborate on how our implementation can fulfill the
security objectives of Section IV-D.

The security of Isomeron is based on the uncertainty for
the adversary to predict the outcome of the random decisions
taken by the diversifier, i.e., whether the execution takes place
in the original or in the diversified program copy. In fact, this
means that the adversary cannot anticipate which gadget chain
and instructions are executed after the control-flow has been
hijacked. For example, a value that is intended to be stored
into the register A could be loaded into register B instead.
Hence, guessing the wrong gadget leads to the wrong exploit
state, i.e., register A contains an undesired value.

This even holds for special gadget pairs (Gi, Gnop), where
at a given offset one program copy performs the gadget
(intended by the adversary) Gi, and the other one simply
executes a nop gadget Gnop. While the occurrence of such
gadget pairs is potentially possible, they still lead to the false

9

exploit state, because the adversary does not know whether
Gi or Gnop is going to be executed. To tackle this problem,
an adversary could increase the success probability of Gi to
be executed by invoking the gadget pair multiple times in a
row. However, the adversary still cannot know how often Gi

is actually executed. Hence, this limits the gadget space for
Gi to gadgets which do not modify their own input value.
For instance, a gadget which adds a value to a register and
saves result in the same register cannot be used, because the
adversary cannot predict the final value in the register. This
limitation excludes many traditional gadgets like those using
the pop instruction to load a value into a register (as the
adversary cannot predict the stack state). Although it remains
open whether it is possible to create a practical attack payload
under these constraints, a code diversifier can mitigate the
threat of nop-gadget pairs by ensuring that all gadget pairs
have some undesirable side-effect, which we consider for
future work.

(JIT) ROP: As mentioned in Section IV-C, we assume that the
adversary is capable of disclosing most of the address space
of an application and assembling her payload using gadgets
from the original and diversified copy at runtime. However,
before the adversary diverts the control flow to the ROP chain,
this chain must contain all addresses the adversary intends to
execute. She cannot modify the ROP chain, after the control
flow has been hijacked. This principle holds for traditional
ROP as well as JIT-ROP. Our approach is to hinder the
adversary’s ability to successfully execute a ROP gadget chain.
Recall that each image will contain different ROP gadgets, as
fine-grained ASLR will eliminate or break the original ROP
gadgets in the diversified image. Since each pointer in the ROP
payload must have a fixed address, the adversary can either
select the gadget from the original or from the diversified
image. However, due to execution path randomization, the
adversary has a chance of p = 0.5 to guess correctly (for each
gadget) that the execution will transfer to the intended gadget
and the adversary’s chances of successfully completing a ROP
chain will exponentially drop with the length of the ROP chain.
As stated in Section IV-B, the effectiveness of our approach
relies on the integrity of the instrumentation framework.

We also note that our approach heavily depends on instru-
menting program code. Yet, the fact that the x86 architecture
allows for variable-length instruction raises further technical
challenges, because a single byte stream can be interpreted in
different ways, depending on the location where the decoding
begins. Thus, one subset of instructions in a program are the
“intended” instructions authored by the software developer
(aided by the compiler), while instructions decoded from
any other starting location are “unintended” or “unaligned”.
It has been shown that one can construct construct Turing-
complete payloads using only unaligned instructions [44]. We
apply a simple countermeasure to eliminate the problem of
unaligned gadgets all-together. We adopt the idea suggested
by Onarlioglu et al. [38] whereby unintended gadgets are
eliminated by inserting alignment instructions, such as NOPs
before instructions which contain potentially helpful bytes for
a ROP payload. The resulting effect is that the byte-stream of
two instructions which might contain an unaligned instruction
will be separated eliminating the ROP gadget. We adopt the
compiler-based techniques of Onarlioglu et al. [38], but apply
them at runtime instead.

Ret-to-libc: Our adversary model assumes that the adversary
is aware of all functions within the process space. Like other
approaches [3, 21, 39, 55], we cannot completely prevent ret-
to-libc attacks. Randomizing the execution flow at a function-
granularity level does not affect ret-to-libc, because, as stated
in Section IV-F, the semantics of a function does not change.
However, we limit the number of possible ret-to-libc targets
using the application’s relocation information. Function ad-
dresses that are included in the relocation information might
be used in a ret-into-libc attack, because they are legitimate
indirect jump targets.

Jump-oriented programming: To mitigate this attack technique,
we limit the potential jump target addresses to those included
in the relocation information. By analyzing the SPEC tools,
we discovered, that on average 92% of the indirect jumps are
performed using jump tables. Using the relocation information,
we can reliably identify the tables and the targets for individual
jumps and limit these jumps to the identified benign targets.
This leaves on average 8% of all indirect jumps available for
jump-oriented programming.

Disclosure of execution diversifier data: Accessing the data
of the execution diversifier can determine the correct location
of the intended gadgets. In our current implementation this
information is part of the trusted computing base as described
in Section IV-B, not accessible to the adversary. Technically
there are different possibilities to realize this, either using
segmentation (e.g., as done in [3]) or by using SGX.

Return to unaligned instructions: In our implementation, return
instructions can only change the instruction pointer to a
previously instrumented basic block. It is not possible to return
to a not instrumented basic block and trick the instrumentation
framework into assuming a new basic block was discovered.
An instrumented call is always followed by a direct jump,
either to an exit stub, in case the subsequent basic block is not
instrumented yet, or to the instrumented basic block. Hence,
a return can safely return to the same BBL the call originated
from.

VII. EVALUATION

In this section, we evaluate Isomeron’s efficiency as well
as the effectiveness against code reuse attacks, in particular
against JIT-ROP. To evaluate its effectiveness, we make use
of a vulnerable test application that contains two representa-
tive memory-related vulnerabilities. The first one is a format
string vulnerability that allows an adversary to leak memory
content from the stack. The second is a stack-based buffer
overflow vulnerability that allows to overwrite a function’s
return address and, hence, to hijack the execution flow of
the application. These two vulnerabilities can be exploited
to first bypass ASLR, and then launch a ROP attack. Note
that similar vulnerabilities are continuously discovered in
real-world applications. Moreover, while our proof-of-concept
exploit uses stack-based vulnerabilities, our solution equally
applies to exploits that leverage heap-based vulnerabilities.

For evaluation purposes, we consider a traditional ROP
attack as successful if the adversary is able to call a ROP
gadget that writes the value 1 into the eax register. For
our experiment, we applied in-place randomization [39]. As
expected, the attack against our vulnerable application fails,

10

because the selected gadget was broken by the applied random-
ization scheme. In a second attempt, we apply nop insertion
which shifts the location of all instructions. Again, the attack
failed. The security in this experiment relies on the secrecy of
the chosen randomization scheme.

For our proof-of-concept implementation we only use a
randomization offset of a single byte. As we will argue in
the following, this very low entropy is already sufficient to
reduce the attack success rate to 50% even if the adversary
can disclose memory content (using principles of JIT-ROP).

In a JIT-ROP attack, the adversary is (potentially) aware of
any byte contained in the address space of the application. To
demonstrate the effectiveness of Isomeron against a JIT-ROP
adversary, we again deploy our vulnerable application. We let
Isomeron randomize the application code and execution path.
For this, we maintain two images of an application in memory
(one unmodified, and a diversified one where instructions are
shifted by one byte). We assume that the adversary knows the
address of the desired gadget in both copies (0x001E8EB3
and 0x19F8EB4 in Figure 8).

Before a ROP chain is executed, the adversary has to
decide whether she chooses to execute the gadget in the
original (A) or diversified copy (Adiv). The decision needs
to be made before the ROP attack is launched, since the
address of the gadget needs to be written onto the stack.
In the example, the adversary chooses the original gadget in
A (0x001E8EB3). Since the sequence of coin flips applied
to function calls is unknown to the adversary, there is only
a chance of p = 0.5 that the intended gadget is executed.
In this example the adversary predicted the wrong location.
Hence, Isomeron modifies the return address by adding the
offset between both images. Since randomization is applied,
the instruction pointer is not set to the desired ROP gadget,
but to the last byte of the previous instruction. In this particular
case the privileged instruction IN is executed, which leads to
an immediate crash of the process.

As noted above, this simplified attack has a success rate of
50% which provides an ample opportunity for an adversary
to succeed. However, real-world exploits typically involve
invoking several gadgets, each of which have a probability of
p = 0.5 of being successfully executed. According to Cheng
et al. [10] the shortest gadget chain Q [43], an automated ROP
gadget compiler, can generate consists of thirteen gadgets.
Hence, the probability for successful execution of a gadget
chain generated by Q is lower or equal to p = 2−13 =
0.000122. Snow et al. [47] successfully exploited a vulner-
ability (CVE-2010-1876) targeting the Internet Explorer
with a ROP payload that consists of only six gadgets, which
would equate to a better, but still low, success probability of
p = 2−6 = 0.0156.

Gadgets PL1 PL2

unique found 102 102
used 16 31
unique used 8 8
diversified (unique; used) 5; 12 5; 25
probability of success p = 0.00024 p = 0.00000003

TABLE II: Analyzed gadgets found by JIT-ROP.

We now turn our attention to the analysis of ROP gadgets
in two JIT-ROP payloads (PL1 and PL2) [47]. The results are
summarized in Tabel II. PL1 represents a very simple payload
that just opens the Windows calculator. JIT-ROP discovered
in total 102 unique gadgets. The generated payload consists
in total of 16 gadgets. Eight of the used gadgets are unique
and affected by our diversification. Note that our proof-of-
concept implementation of nop insertion does not affect all
gadgets, e.g., gadgets which are comprised of entire BBLs.
However, we only chose nop insertion due to its simplicity,
and one can simply use in-place instruction randomization as
performed in [39] to increase the randomization entropy. Since
these gadgets were used multiple times, the probability that the
ROP chain gets executed correctly is p = 2−12 ' 0.00024.
PL2 represents an average size payload. It also starts the
Windows calculator but additionally performs a clean exit of
the vulnerable application. Our diversification affects 25 out
of 31 used gadgets, reducing the probability of success to
p = 2−25 ' 0.00000003.

We reliably identify jump tables using the relocation in-
formation of the binary during the translation process. We
limit the target addresses of an indirect jump to the legitimate
addresses that are listed in the corresponding jump table. We
evaluated the effectiveness for the SPEC tools using IDA Pro.
In Table III, we list the percentage of indirect jumps that use
a jump table to determine their destination address. Limiting
indirect jumps to their benign target addresses decreases the
number of potentially useable indirect jumps on average by
92.07%. Note that the remaining 8% might not even be suitable
for jump-oriented programming, because indirect jump gadgets
must fulfill certain requirements [8].

SPECINT table jumps
400 96.51
401 93.85
403 99.47
429 93.55
445 93.55
456 94.45
458 95.3
464 93.26
471 83.56
473 83.77

SPECFP table jumps
433 91.90
444 84.10
447 89.55
450 92.13
453 97.20
470 90.91

TABLE III: Percentage of indirect jumps for each SPEC tool
that use a jump table.

Runtime performance: To be comparable to other solutions [3,
13, 14, 18, 21, 55], we measured the the CPU time overhead of
Isomeron, by applying it to SPEC CPU2006. We conducted our
performance tests on a 3.1 GHz i5-2400 machine with 4 GB
RAM running Windows 8.1 32 bit. The SPEC benchmarking
tools as well as Isomeron were compiled with the Microsoft
compiler version 16.00.30319.01 with full optimization en-
abled. For the SPEC tools we selected the default input for
reference measurements, ran each tool three times, and selected
the median for our statistic.

Figure 9 shows the results of our performance evalua-
tion using the SPEC benchmarking tools. We measured the
overhead of PIN and our dynamic binary instrumentation
framework (DBI) without any activated instrumentation tools,
and our DBI with execution path randomization enabled.

11

001E8EB1 mov ebp,esp
001E8EB3 mov eax,1
001E8EB8 pop ebp
001E8EB9 jmp ReturnHandler

019F8EB3 in al,dx
019F8EB4 mov eax,1
019F8EB9 pop ebp
019F8EBA jmp ReturnHandler

A

Adiv

Adversary

Isomeron

intends to execute

redirects exeuction

execute gadget in A

Fig. 8: Targeted (upper) and executed gadget (lower).

0	

1	

2	

3	

4	

5	

6	

40
0.p
erl
be
nc
h	

40
1.b
zip
2	

40
3.g
cc	

	

42
9.m

fc	

44
5.g
ob
mk
	

45
6.h
mm

er	

45
8.s
jen
g	
 	

46
4.h
26
4re
f	

47
1.o
mn
etp
p	

47
3.a
sta
r	

43
3.m

ilc	

44
4.n
am
d	
 	

44
7.d
ea
lII	

45
0.s
op
lex
	

45
3.p
ov
ray
	

47
0.l
bm
	

Av
era
ge
	

PIN	
 our	
 DBI	
 our	
 DBI	
 incl.	
 Isomeron	

Fig. 9: CPU Runtime Overhead for SPEC CPU2006.

Compared to our framework, PIN induced less overhead for
most benchmarks, because it implements mature optimizations
techniques. However, in some cases (e.g., 429.mfc) these
optimizations are not triggered and the overhead induced by
our framework is comparable to the overhead of PIN. Note
that as discussed in Section V PIN cannot fulfill the require-
ments imposed by Isomeron. The activation of execution path
randomization in our instrumentation framework induces an
additional overhead which is on average 19%.

The noticeable variation of overhead between individual
measurements is the result of our instrumentation framework,
since specifically in our current implementation most indirect
branches require a full context switch to the framework and
then back to the application, except from indirect jumps that
are computed through jump tables. On the other hand, dynamic
binary instrumentation inherently introduces a non-negligible
performance overhead. As discussed in Section V we decided
to use dynamic binary instrumentation to be compatible to
legacy application.

Limitations: The implementation of our instrumentation frame-
work focuses on features that are crucial to prove our concept,
namely multiple copies and Windows support. Therefore, our
instrumentation framework is not as mature as pure instrumen-
tation frameworks [6, 31] in terms of performance and com-
patibility. Even so, it demonstrates the feasibility of Isomeron,
where the average overhead of execution path randomization
is 19% in our empirical evaluations. This degradation in
performance is somewhat expected, given that our program

shepherding renders certain CPU optimizations (e.g., branch
prediction) ineffective. However, in contrast to most control-
flow integrity solutions [1, 57], which require static analysis,
dynamic binary instrumentation can also handle dynamically
generated code.

Except Oxymoron [3], fine-grained randomization
schemes [14, 21, 39, 55] do not allow code sharing among
processes, because they randomize the program code (for
security reasons) differently for every process. Our current
implementation of Isomeron also does not allow code sharing,
because we use dynamic binary instrumentation. However,
in contrast to other fine-grained randomization schemes we
assume that the original and diversified code is known to
the adversary. Hence, our security is not weakened if the
same code randomization is applied to a library that is shared
among processes. The best way to achieve this is to use a
compiler.

The components of Isomeron must be protected against
code and data tampering (cf. Section IV-B). Both requirements
can be fulfilled by applying segmentation. This x86 legacy
feature allows for dividing the memory into different segments,
where one segment is more privileged than the other. Hence,
embedding Isomeron into the more privileged segment ensures
that it cannot be accessed or modified by the adversary,
while Isomeron can still instrument the target application. One
disadvantage of segmentation is that it is only available for
32 bit applications. However, Intel’s upcoming Software Guard
Extension (SGX) [23] can provide a protected environment
within a process for 32 and 64 bit applications.

VIII. RELATED WORK

In general, ROP mitigation techniques can be categorized
into two classes. The first class tries to passively prevent ROP
by removing gadgets from the binary [29, 38] or randomizing
critical memory areas. The latter is implemented in modern
operating systems using ASLR. However, as we mentioned
before, ASLR is vulnerable to memory disclosure and brute-
force attacks (see Section II-A). To improve simple ASLR,
recent research has focused on increasing the randomiza-
tion entropy through fine-grained ASLR [28]. The proposed
randomization techniques range from basic block [14, 55]
and function permutation [26] to randomization at instruction
level granularity [21]. While the aforementioned solutions are
based on binary instrumentation, one can also apply source
code transformation to produce binaries that apply fine-grained
randomization at load-time [5]. However, all these solutions

12

have been shown to be vulnerable to JIT-ROP attacks that
dynamically generate ROP payloads at runtime.

One approach to tackle the weaknesses of fine-grained
ASLR is to periodically re-randomize program code [18].
However, the approach has only been validated for a micro-
kernel and only to software running in kernel mode. We
belive that the same re-randomization techniques will likely
induce significant performance overhead for modern user-level
programs. Another defensive strategy is to perform explicit
checks based on predefined policies. A prominent technique
of this class is control-flow integrity (CFI). The main idea
is to derive an application’s control-flow graph (CFG) prior
to execution and validate at runtime whether an application
follows a valid path in the CFG [1]. Proposed solutions range
from label checking [1], maintaining a shadow stack [13, 46]
over light-weight techniques to ensure that the return address
points to an instruction directly following after a call instruc-
tion [57]. An even more coarse-grained approach of CFI is to
enforce ROP chain detection during critical function calls [40].
While the performance was indeed improved, the relaxation of
the policies enlarged the attack surface to an extent, that the
applied mitigation can be bypassed [7, 15, 19, 20].

CFI offers a very different approach compared to
randomization-based solutions. While CFI performs explicit
checks, randomization-based solutions are passive and purely
rely on a secret (e.g., the randomization offset in ASLR).
The randomization-based solutions are typically more efficient.
For instance, the average overhead of (fine-grained) CFI is
about 21% [1], where randomization-based solutions typically
only induce marginal or no overhead [39]. Isomeron induces
a comparable overhead to CFI. This is because Isomeron is
based on dynamic binary instrumentation, where CFI uses
static instrumentation. As noted in Section V, dynamic instru-
mentation is preferred over static instrumentation to satisfy our
requirements (e.g., disassembly coverage, dynamic insertion of
instructions).

Concurrently to our work other mitigation techniques that
aim to prevent JIT-ROP have been published. eXecute-no-Read
(XnR) by Backes et al. [4] emulate execute-only code pages
to limit JIT-ROP’s ability to disclose code pages by keeping
only n pages readable and executable at the same time. All
other pages are marked as non-present and therefore generate a
fault when read by the adversary. The security of XnR is based
on the assumption that an adversary cannot predict the exact
point in time when a code-page is readable. This makes XnR
potentially vulnerable to disclosure attacks where Isomeron
explicitly assumes that the adversary can disclose all code
pages.

With Code-Pointer-Integrity, Kuznetsov et al. [27] aim to
prevent control-flow hijacking by ensuring pointer integrity.
This is achieved by using static analysis to identify all critical
program variables that contain code pointers or pointers that
eventually point to code pointers. At runtime, the memory
for the variables is split into two areas: a secure area that
contains all critical variables and a normal area for all other
variables. All accesses to the secure area are instrumented to
perform extensive security checks, e.g., checking that write
operations to a buffer cannot corrupt critical variables. In
contrast to Isomeron, CPI requires a complex static analysis

and the source code of the targeted application, which makes
it impractical for dynamically generated code.

Mohan et al. [34] combine corse-grained CFI with code
randomization. Opaque CFI (O-CFI) uses static analysis to
identify the destinations for each indirect branch and inserts
CFI checks to limit each branch to the boundaries imposed by
the lowest and hight address of all destination addresses. The
bound range varies due to code randomization and the bound
information are protected through segmentation which makes
O-CFI immune to certain kinds of memory disclosure. O-CFI
requires a precise static analysis to reconstruct indirect branch
addresses which is an error prone task and is not compatible
with dynamically generated code.

IX. CONCLUSION

Just-in-time return-oriented programming (JIT-ROP) has
demonstrated the limitations of fine-grained code randomiza-
tion schemes to protect against sophisticated runtime attacks.
We show that defending against JIT-ROP is a challenging
task, in that one can trivially extend the JIT-ROP framework
to bypass a recently proposed JIT-ROP mitigation scheme.
Not wanting to stop there, we then provide an alternative
approach, called Isomeron, that not only randomizes the code
but also the execution path. The idea is based on random-
izing the execution path between two differently structured
but semantically identical application copies. We developed
a dynamic binary instrumentation framework for Windows
and outlined the technical challenges. To further improve the
performance of our technique, we are currently integrating
known optimization techniques from existing dynamic binary
instrumentation frameworks to enhance the efficiency of Iso-
meron and designing a compiler-based solution.

X. ACKNOWLEDGMENTS

We would like to thank Stephen McCamant for his in-depth
feedback that guided the paper’s final revisions. We also thank
Per Larsen and Ferdinand Brasser for fruitful discussions. This
work has been co-funded by the DFG within the CRC 1119
CROSSING.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity: Principles, implementations, and applications. ACM
Trans. Inf. Syst. Secur., 13(1), 2009.

[2] Aleph One. Smashing the stack for fun and profit. Phrack
magazine, 7(49):365, 1996.

[3] M. Backes and S. Nürnberger. Oxymoron - making fine-grained
memory randomization practical by allowing code sharing. In
USENIX Security Symposium, 2014.

[4] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny. You can run but you can’t read: Preventing disclosure
exploits in executable code. In ACM Conference on Computer
and Communications Security (CCS), 2014.

[5] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
USENIX Security Symposium, 2005.

[6] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework for
windows. In 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), 2001.

13

[7] N. Carlini and D. Wagner. Rop is still dangerous: Breaking
modern defenses. In USENIX Security Symposium, 2014.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented programming
without returns. In ACM Conference on Computer and Com-
munications Security (CCS), 2010.

[9] X. Chen. Analyzing the first ROP-only, sandbox-
escaping PDF exploit. http://blogs.mcafee.com/mcafee-labs/
analyzing-the-first-rop-only-sandbox-
escaping-pdf-exploit, 2013.

[10] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. Ropecker:
A generic and practical approach for defending against rop
attacks. In Symposium on Network and Distributed System
Security (NDSS), 2014.

[11] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint
analysis framework. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, 2007.

[12] M. Conover and w00w00 Security Team. w00w00 on heap
overflows. http://www.cgsecurity.org/exploit/heaptut.txt, 1999.

[13] L. Davi, A.-R. Sadeghi, and M. Winandy. Ropdefender: A
detection tool to defend against return-oriented programming
attacks. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2011.

[14] L. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi.
Gadge me if you can - secure and efficient ad-hoc instruction-
level randomization for x86 and ARM. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[15] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching
the gadgets: On the ineffectiveness of coarse-grained control-
flow integrity protection. In USENIX Security Symposium, 2014.

[16] T. Durden. Bypassing PaX ASLR protection. Phrack magazine,
11(59), 2002.

[17] Gadgets DNA.com. How PDF exploit being used by Jail-
breakMe to jailbreak iPhone iOS 4.0.1. http://www.gadgetsdna.
com/iphone-ios-4-0-1-jailbreak-execution-flow-
using-pdf-exploit/5456/, 2010.

[18] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained
address space randomization. In USENIX Security Symposium,
2012.

[19] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In IEEE
Symposium on Security and Privacy, 2014.

[20] E. Göktas, E. Athanasopoulos, C. Heraklion, G. M. Polychron-
akis, H. Bos, and G. Portokalidis. Size does matter. In USENIX
Security Symposium, 2014.

[21] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson.
ILR: Where’d my gadgets go? In IEEE Symposium on Security
and Privacy, 2012.

[22] M. Howard. Address space layout randomization in Windows
Vista. http://blogs.msdn.com/b/michael howard/archive/2006/
05/26/address-space-layout-randomization-in
-windows-vista.aspx, 2006.

[23] Intel. Software guard extensions programming reference. https://
software.intel.com/sites/default/files/329298-001.pdf. Accessed:
2014-11-16.

[24] N. Joly. Advanced exploitation of Internet Explorer
10 / Windows 8 overflow (Pwn2Own 2013).
http://www.vupen.com/blog/20130522.Advanced Exploitation
of IE10 Windows8 Pwn2Own 2013.php, 2013.

[25] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-
injection attacks with instruction-set randomization. In IEEE

Symposium on Security and Privacy, 2003.
[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space

layout permutation (aslp): Towards fine-grained randomization
of commodity software. In Annual Computer Security Applica-
tions Conference (ACSAC), 2006.

[27] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2014.

[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok:
Automated software diversity. In IEEE Symposium on Security
and Privacy, 2014.

[29] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
return-oriented rootkits with ”return-less” kernels. In Proceed-
ings of the 5th European Conference on Computer Systems,
2010.

[30] libdasm. libdasm. https://code.google.com/p/libdasm/, 2014.
[31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.
ACM Sigplan Notices, 40(6):190–200, 2005.

[32] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In USENIX Security Symposium, 2006.

[33] Metasploit. Metasploit. http://www.metasploit.com/. Accessed:
2014-07-14.

[34] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz.
Opaque control-flow integrity. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[35] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation
to find integer bugs in x86 binary linux programs. In USENIX
Security Symposium, 2009.

[36] R. Naraine. Memory randomization (ASLR) coming to
Mac OS X Leopard. http://www.zdnet.com/blog/security/
memory-randomization-aslr-coming-to-mac-os
-x-leopard/595, 2007.

[37] N. Nethercote. Dynamic binary analysis and instrumentation.
PhD thesis, PhD thesis, University of Cambridge, 2004.

[38] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda.
G-free: Defeating return-oriented programming through gadget-
less binaries. In Annual Computer Security Applications Con-
ference (ACSAC), 2010.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the gadgets: Hindering return-oriented programming using in-
place code randomization. In IEEE Symposium on Security and
Privacy, 2012.

[40] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent
rop exploit mitigation using indirect branch tracing. In USENIX
Security Symposium, 2013.

[41] M. Payer and T. R. Gross. Generating low-overhead dynamic
binary translators. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, 2010.

[42] A. Pelletier. Advanced exploitation of Internet
Explorer heap overflow (Pwn2Own 2012 exploit).
http://www.vupen.com/blog/20120710.Advanced Exploitation
of Internet Explorer HeapOv CVE-2012-1876.php, 2012.

[43] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit
hardening made easy. In USENIX Security Symposium, 2011.

[44] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In ACM
Conference on Computer and Communications Security (CCS),
2007.

[45] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization.

14

In ACM Conference on Computer and Communications Security
(CCS), 2004.

[46] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent run-
time shadow stack: Protection against malicious return address
modifications, 2008.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In IEEE
Symposium on Security and Privacy, 2013.

[48] Solar Designer. Getting around non-executable stack (and fix),
1997.

[49] A. Sotirov. Heap Feng Shui in JavaScript. In Black Hat Europe,
2007.

[50] A. N. Sovarel, D. Evans, and N. Paul. Wheres the feeb?
the effectiveness of instruction set randomization. In USENIX
Security Symposium, 2005.

[51] S. Sridhar, J. S. Shapiro, and P. P. Bungale. Hdtrans: A low-
overhead dynamic translator. SIGARCH Comput. Archit. News,
35, 2007.

[52] Ubuntu Wiki. Address space layout randomization (ASLR).
https://wiki.ubuntu.com/Security/Features#aslr, 2013.

[53] VUPEN Security. Advanced exploitation of internet explorer
heap overflow (pwn2own 2012 exploit), 2012.

[54] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-
aware directed fuzzing tool for automatic software vulnerability
detection. In IEEE Symposium on Security and Privacy, 2010.

[55] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code. In ACM Conference on Computer and Communi-
cations Security (CCS), 2012.

[56] Y. Weiss and E. Barrantes. Known/chosen key attacks against
software instruction set randomization. In Annual Computer
Security Applications Conference (ACSAC), 2006.

[57] M. Zhang and R. Sekar. Control flow integrity for cots binaries.
In USENIX Security Symposium, 2013.

[58] D. D. Zovi. Practical return-oriented programming. Invited Talk,
RSA Conference, 2010.

15

	Introduction
	Bypassing Code Randomization with JIT-ROP
	Basics
	Just-in-Time Code Reuse

	Beyond Fine-grained ASLR: Bypassing Oxymoron
	High-level Attack Description
	Exploit Implementation

	title
	Design Decisions
	Assumptions
	Adversary Model
	Security Objectives
	High-level Idea of our Solution
	Architecture of Isomeron
	Instrumentation of direct function calls
	Instrumentation of function returns
	Instrumentation of indirect jumps and calls

	Implementation of Isomeron
	Dynamic Binary Instrumentation
	Implementation of our Dynamic Binary Instrumentation Framework
	Setup
	Initialization of code and data
	Basic Block translation
	Execution diversifier

	Security Considerations
	Evaluation
	Related Work
	Conclusion
	Acknowledgments

