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Abstract—Bug triaging entails a laborious process wherein
triagers spend time examining new bug reports, localizing the
bugs, and assigning them to the appropriate developer(s) to fix
the bugs. In recent years, the adoption of automated software
testing techniques (e.g., fuzzing) further complicates the process
because bug hunters can submit an overwhelming number of
reports in a short period. To lessen these pain points, we
present an approach that extracts a fingerprint from crash
information within a bug report, and returns a group of bugs
with similar behaviors. Our approach uses symptoms of the
crash to create a robust fingerprint, and leverages MinHashing
and Locality Sensitive Hashing to match crashes, as well as
a sequential pattern mining algorithm to find frequent closed
sequences among bugs. Our evaluation shows that our approach
outperforms contemporary approaches (e.g., finding previously
unknown duplicates among 81 CVEs), and saves triagers time
and effort.
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I. INTRODUCTION

Over the past decade, automated software testing techniques
(e.g., fuzz testing) have risen in popularity due to their ease of
use and effectiveness in finding bugs. To date, such automated
software testing techniques have successfully discovered hun-
dreds of exploitable bugs in widely used software. As a result,
project maintainers often receive bug reports on a daily basis,
with popular large-scale projects, like Gnome, receiving over
120 submissions daily [41].

Inevitably, many of the reported bugs are duplicates of
existing bugs due to the fact that bug hunters used widely
different tools and practices, and often end up submitting
reports for the same flaws [41, 7, 21]. While contemporary
deduplication approaches (e.g., stack hashing, edge coverage)
can in most cases identify bugs that are exact duplicates
of existing bug, they are not effective in case of inexact
duplicates [29, 33] — bugs that share similar characteris-
tics and causes with a known bug but are not completely
identical to the known bug. The deluge of reported bugs is
a problem because the task of identifying duplicate bugs,
and categorizing the relationship among bugs (e.g., different
bugs in the same function), is generally left to a triager.
The process is time consuming and tedious if for no other
reason than it demands manually searching through a large
datastore to infer relationships. Anvik et al. [6] noted that

in 2005, even before fuzzing became as popular as it is
today, the Eclipse project required two man-hours daily just
to address duplicates. For large projects like Mozilla — where
duplicates account for 30% of the total bugs reported [6] —
the time wasted quickly adds up.

Obviously, identifying and analyzing the relationship
among reported bugs is important for several reasons. First,
identifying duplicate bugs can significantly improve the pro-
ductivity of triagers. Jeong et al. [27] shed light on how time-
consuming the triaging process can be, and notes that from
their analysis of 45,000 bug reports from Eclipse, they found
that on average, a bug takes 16.7 days to receive the first
action and 23.6 days to be assigned. The assignment takes
time as triagers must check each report, understand the cause
of the bug, assign a priority to the bug, and then match each
bug to the proper developer. With duplicate bugs identified
and grouped, triagers only need to inspect a subset of the
reports. Second, analyzing the relationship among bugs can
also significantly improve downstream tasks like root cause
analysis [24]. Although duplicate bugs are usually unwanted,
sometimes they could assist the analysis. Bettenburg et al.
[8] shows that identifying duplicates can sometimes provide
more perspective and pointers about the source of a bug. For
instance, if a newly reported bug is an inexact duplicate of a
previously fixed bug, then it means the patch was incomplete,
and the bug could still be exploited in other ways.

To provide a pragmatic solution that addresses the dearth
of tools in this area, we present CrashSearch. CrashSearch
uses the symptoms of a crash available in a bug report
to create a fingerprint that it uses to search for bugs with
similar behaviors, and leverages sequential pattern mining to
effectively showcase relationships among duplicate bugs.

Specifically, our contributions include:
• A novel hybrid approach using MinHashing [11] (to

estimate the similarity between bugs based on features
extracted from their bug reports) and Locality Sensitive
Hashing [23] (to store groups of similar bugs in the same
locality in a datastore).

• The application of the BI-Directional Extension (BIDE)
algorithm [48] on stack backtraces to categorize the
relationship (at both function and line granularities)
among groups of similar bugs.

• A case study of how CrashSearch was used to triage



crashes generated during a fuzzing campaign.
• An analysis of discovered similarities among 81 Com-

mon Vulnerabilities and Exposures (CVEs) submitted
over the past several years.

II. BACKGROUND

a) Bug Triaging.
Large scale software projects such as PHP and Mozilla

use bug tracking systems such as Bugzilla [1] to facilitate the
submission and management of bug reports. When reporting
a bug, the submitter is required to provide a summary of
the bug, steps to reproduce the bug, and search the bug
datastore for duplicate bugs [1]. Due to the inefficiencies
of contemporary deduplication tools at finding unique bugs
[29, 33] and diversity in bug report construction [8], duplicate
bugs are often reported. Subsequent to bug submission, a
triager generally conducts a manual bug triaging process.
Triaging is the process of analyzing the reported bugs.
Triaging typically involves three steps: deduplication, pri-
oritization, and assignment. During deduplication, a triager
generally conducts a manual comparison between a newly
reported bug and existing bugs to identify duplicates [5, 8].
Whenever duplicate bugs are detected, the triager marks
them as duplicates and adds a reference to the original bug
report [5, 8]. Following deduplication, bugs are assigned to
a responsible developer along with a priority [5, 8]. Once
assigned, bug fixes are typically prioritized based on the
potential damage the flaw could cause [44].

b) Similarity Comparison.
The problem of determining the similarity among large

datasets is by no means new. Previous works [11, 23, 16]
have studied techniques to find exact and inexact duplicate
items. These techniques have been applied to various fields
within computer security, including (but not limited to) mal-
ware analysis [39] and reused function detection in program
binaries [4]. Within these domains, the Jaccard similarity
measure is one of the most widely used metrics to compute
the similarity between objects.

The Jaccard similarity is simply the ratio of the size of
objects’ intersection to the size of their union [32]. While
effective, computing the Jaccard similarity is expensive, and
it requires pairwise comparisons. Therefore, it is not suitable
in scenarios where there are a large number of objects to be
compared. Instead, the MinHash algorithm [11] is used to
efficiently approximate the Jaccard similarity between two
objects by hashing the elements of each object using N
hash functions and retaining only the minimum hash values
for each hash function. The estimated Jaccard similarity is
the ratio of the intersection of hash values for both objects,
divided by the total hash functions N. MinHash improves
efficiency because it does not require pairwise comparison
among all the elements of an object and each object is
represented as a fixed size integer array of size N. Moreover,

MinHash supports Locality Sensitive Hashing (LSH) which is
a technique that improves the scalability of nearest neighbor
search for large datasets by hashing similar objects to the
same locality.

III. RELATED WORK

Brodie et al. [13] were the first to discuss the need for a
practical system that identifies known software problems. To
that end, the authors applied a custom incremental machine
learning approach that generates a signature to find a “best”
matched sequence of consecutive function names among
stack backtraces. Additionally, they adopted the Needleman-
Wunsch algorithm for matching stack backtraces and then
applied top-k indexing to eliminate pairwise comparisons.
Modani et al. [35] extended Brodie et al. [12] to include three
string matching algorithms for stack backtrace similarity,
namely Edit Distance, Longest Common Subsequence and
Prefix Matching, and found that the top-k indexing scheme
outperformed existing [21, 7, 35] solutions.

More distantly related are approaches that leverage natural
language processing techniques [30, 51, 26, 38] to detect
duplicate bug reports. These techniques, however, are focused
on clustering of reports based on textual data in the report,
and serve as a quick way to group reports. For bugs generated
from crashes, a textual description is not always available to
compare similarities. More importantly, they do not help in
pinpointing the likely expressions (both sinks and sources)
responsible for the crash. An exception is the work of
Wang et al. [50], that combines stack backtrace and natural
language features to detect duplicate reports. Their approach
uses the vector space model, and each element in the vec-
tor is calculated using Term Frequency-Inverse Document
Frequency (TF-IDF). The stack backtrace and the natural
language features are stored in separate vectors, and they
are compared separately during classification. Unfortunately,
since most toolchains (e.g., fuzzers) do not provide bug de-
scriptions of crashes written in natural language, approaches
that rely on such data are fairly limited in practice.

Bartz et al. [7] later proposed a machine learning-based
approach to identify similar failures. The authors used three
categorical features, namely exception code, process name,
and event type along with similarity measures of the stack
backtrace computed using edit distance to fit a logistic
probability model. To eliminate pairwise comparison, the
authors adopted the top-k indexing scheme to provide an
initial list of candidate failures. Likewise, Dang et al. [19]
proposed an approach dubbed ReBucket for clustering
duplicate crash reports based on stack backtrace similarity.
The ReBucket approach uses a Position Dependent Model
that computes the similarity of two stack backtraces based
on the number of functions on both stack backtraces, the
distance of the functions from the top stack frame, and offset
distance between the match functions. Stack backtraces are



Approach Features Similarity Algorithm Large Scale Storage Group Analysis

Bartz et al. [7]
Call Stack, Exception Code,
Process Name, Event Type

Edit Distance
Machine Learning (logistic probability) Top-k Indexing None

Brodie et al. [13] Call Stack Best Matched Sequence ML Model None None
Brodie et al. [12] Call Stack Needleman-Wunsch algorithm Top-k Indexing None

Castelluccio et al. [15]
Platform, Version, Addons,
Modules, CPU info None None Contrast-set Mining

Dang et al. [19] Call Stack Position Dependent Model (PDM) None None
Dhaliwal et al. [21] Call Stack Edit distance None None
Khvorov et al. [28] Call Stack Machine Learning (long short-term memory) None None
Lerch and Mezini [31] Call Stack Term Frequency-Inverse Document Frequency None None

Modani et al. [35] Call Stack
Levenshtein Distance
Longest Common Subsequence
Prefix Matching

Top-k Indexing
Inverted Indexing None

Sabor et al. [41]
Call Stack, Component,
Severity Cosine Similarity None None

Vasiliev et al. [46] Call Stack
Term Frequency-Inverse Document Frequency
Edit Distance None None

Wang et al. [50]
Call Stack, Bug Summary Text
Bug Description Text

Vector Space Model
Term Frequency-Inverse Document Frequency None None

CrashSearch (Our Approach)
Signal, Bug Type, Call Stack,
Crash Function, Crash Line MinHashing

Locality Sensitive
Hashing (LSH)

BI-Directional
Extension (BIDE)

TABLE I: Comparison of contemporary crash similarity approaches

clustered based on their similarity measures.

Lerch and Mezini [31] used TF-IDF for finding duplicate
bug reports for the Eclipse project. The similarity of two
stack backtraces is determined by the number of similar
functions they have. In a similar fashion, Sabor et al. [41]
introduced DURFEX, which is an approach for finding du-
plicate bug reports for Java crashes. The authors combined
the stack backtrace similarity along with the similarity of
two non-textual fields. Each trace is represented as a feature
vector and similarity is measured using cosine similarity.
In analyzing bug similarity, Castelluccio et al. [15] apply a
contrast-set mining technique to find significant deviations
among groups of crashes. Closeness is computed relative
to a user-specified threshold. Different from this approach,
we perform sequential pattern mining on stack backtraces to
analyze the relationship among duplicate crashes. To improve
pairwise comparisons among stack traces, Rodrigues et al.
[40] proposed an approach that uses a sequence alignment
algorithm to compute the similarity score between stack
traces in linear time. By contrast, we forego the need to
conduct pairwise comparisons among all stack traces via
applications of novel indexing.

Several works [17, 52, 18] attempt to infer the root cause
of bugs by augmenting the crash deduplication process.
However, these root cause analysis techniques impose more
operational requirements on the triager than we consider
practical (e.g., having the binary, a core dump, and a capabil-
ity to collect instruction traces) in most settings. Moreover,
performing root cause analysis on every crash requires human
verification – a task which could be made less burdensome by
only performing more laborious root cause analyses on the
unique reports filtered using the techniques described herein.

IV. APPROACH

We designed CrashSearch for the specific purpose of ef-
ficiently mapping a reported bug to related known bugs
within a bug datastore, including both exact and inexact
duplicates. We also provide a way to examine relationships
among similar bugs. The motivation stems from the fact that
despite many years of research in the academic community,
crash triaging still remains an important problem in dire
need of practical solutions. Motivating applications abound.
For instance, in a recent study of 0-day exploits, Stone
[43] found that 25% of 0-day exploits found in 2020 were
variants of previously found vulnerabilities, and within these
vulnerabilities, half of the bugs were fixed incompletely when
they were first discovered. Recently, Vyukov [47] emphasized
that the Linux kernel team desperately needs more developers
to help with triaging of bugs.

In response to that need, our solution encompasses the
four components shown in Figure 1. The report process-
ing component ➀ extracts the features from a bug report
and generates data structures required for later components,
including the fingerprint of the bug and the LSH indexes.
The insertion component ➁ uses the indexes to efficiently
store fingerprints of bugs. The query component ➂ takes
the indexes to retrieve similar candidates from the datastore
and performs similarity comparisons. The final component ➃
performs pattern mining to discover the relationship among
bugs.

A. Component ➀ Report Processing

a) Feature Extraction.
The features CrashSearch uses are given in Table II. We

treat the signal, bug type, crash function, and crashing line
as strings. For the backtrace, we group consecutive function
names as bi-gram and select each pair as a feature. It is
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Figure 1: Overall workflow of CrashSearch

typical for bug reports describing crashing bugs to contain
the required information, and other textual descriptions which
we do not use. CrashSearch uses a script to extract the
features from the output of the crash in the bug report. In a
situation where a bug report is missing some of the required
information, the script is also capable of generating the
information by running the program with the GDB debugger
and AddressSanitizer [42], if the bug report includes a
reproducible crashing input.

Full Data Encoding Feature Example

Signal String SIGSEGV, SIGABRT
Bug Type String Use-after-free, heap-overflow
Crash Function String foo()
Backtrace Bi-gram (main,foo),(foo,bar),(bar,baz)
Crashing Line String value = *ptr++;

TABLE II: Features used for generating bug fingerprint

b) Fingerprint Generation.
Once features are collected, we use the MinHash [11]

algorithm to generate a fingerprint for each bug. We apply
N different hash functions to generate the fingerprint for a
bug, where each hash function generates a signature that is
part of the fingerprint. In our implementation, we empirically
selected N=256 hash functions to have a fair balance of per-
formance and error rate when estimating Jaccard similarity.
The estimation is based on the formula (1/

√
N). This means

that our estimate in Jaccard similarity will be off by 0.06%.
We use a non-cryptographic hash function, MurmurHash,
for efficient hashed-based lookups.

c) Index Generation.
In order to reduce the amount of comparisons, Crash-

Search utilizes LSH during insertion and query such that
it only needs to compare a fingerprint to a small subset of
fingerprints in the datastore. CrashSearch computes the LSH
indexes before insertion or query. CrashSearch divides the
signatures of each fingerprint into b bands, where each band
contains r rows of signatures. For each band, CrashSearch
generates the index by hashing it using the LSH hash

function, which allows similar values to collide. The indexes
are later used in the insertion component and the query
component. §V-A1 describes how b and r are chosen in
practice.

B. Component ➁ Insertion

We use LSH to implement efficient insertion of bugs into
our datastore. Specifically, LSH groups items into different
buckets, with items in the same bucket sharing similar
values [23]. For each band of a fingerprint, CrashSearch
inserts it into a bucket in the datastore. This means that
bands in the same bucket share similar signatures, and new
fingerprints can be inserted without re-hashing all existing
fingerprints.

C. Component ➂ Query

When querying for potentially similar bugs, we use the
LSH indexes to determine the bucket for each band of the
report’s fingerprint. CrashSearch considers all fingerprints
whose bands collide with a band of the query fingerprint to
be candidates. For each candidate, we compare the signatures
of the candidate to the signatures of the query fingerprint in
the collided band. Specifically, we estimate Jaccard similarity
as JS(Q,C) = |QM∩CM |

N , where QM represents the MinHashes
in the query fingerprint, CM represents the MinHashes in the
candidate fingerprint and N is the number of hash functions.
After comparing with all the candidate fingerprints, we return
a group (if any) of candidates along with the corresponding
bug description and Jaccard similarity score.

D. Component ➃ Examine Relationships

In addition to finding exact and inexact duplicate bug
reports, CrashSearch can be used to examine the relationships
among duplicate reports. For that, we leverage the BI-
Directional Extension (BIDE) algorithm 1, which is a type of
sequential pattern mining algorithm used for mining frequent
closed ordered subsets [48]. The frequency is based on a
user-defined threshold called the min support, which is the
minimum number of sequences in which the given pattern
occurs. Besides computing common function call sequences
from the stack backtrace, we also extract shared sequences
at the line-level granularity. We have found this capability
to be extremely helpful as it allows a triager to gain better
insights into the relationships among bugs over time.

V. REAL-WORLD EVALUATION

To evaluate the effectiveness of our approach, we designed
experiments that centered on gaining insights relative to four
questions:

RQ1 How well does CrashSearch identify duplicates of known
bugs, compared to existing solutions?

1https://github.com/RonaldYu/bide-algorithm



RQ2 Is CrashSearch efficient enough to support large soft-
ware projects?

RQ3 Can CrashSearch help triagers more easily find rela-
tionships among bugs?

RQ4 Can CrashSearch effectively reduce the number of
crashes triagers have to analyze?
a) Assumptions and Experimental Setup.

We assume the triager(s) maintains a datastore of crash
fingerprints. As CrashSearch supports inserting new finger-
prints to a datastore, the maintainer can utilize that capability
to initialize a new datastore with information from existing
bug reports. Experiments were conducted on a system with
an Intel(R) Core(TM) i7-4790 CPU processor and 16 GB
of memory. For the first set of experiments, we established
ground truth for inexact duplicate reports by generating
crashes for each bug using the AFL fuzzer [53] configured
in crash exploration mode. The crash exploration mode takes
a crashing test case and mutates it to generate new crashes
that trigger the same bug but traverse new code paths. The
same methodology has been applied in prior studies on crash
triaging [45] and bug localization [9]. Each fuzzing run was
conducted for a period of 24 hours. For the experiments
in Section V-D, we use different fuzzing tools to mimic
the vulnerability discovery process and practices employed
by different groups prior to submitting their reports to a
project maintainer. These experiments ran in a virtualized
environment on an Intel(R) Xeon CPU E5-2630 v4 processor
and 128 GB memory. Experiments with different fuzzers
were run on separate days.

A. RQ1: How well does CrashSearch identify duplicates of
known bugs, compared to existing solutions?

To assess the accuracy of our approach, we compare
CrashSearch with techniques that have been widely adopted
for crash triaging by security researchers and practitioners,
and state-of-the-art approaches in indexing and in similarity
search. Specifically, we compare the LSH indexing compo-
nent of CrashSearch with the top-k indexing scheme as it
is one of the most widely used techniques [12, 35, 14] for
matching fingerprints. Second, we compare the MinHash-
based component of CrashSearch with the leading contenders
(i.e., prefix match [35], TraceSim [46], and major and minor
stack hashing [29, 33, 22]) commonly used for deduplication.

Duplicates

Program Version
Count

Exact
Test Set

Inexact
Test Set

Negative
Test Set

JasPer 2 5 160 165
libarchive 2 4 367 371
libjpeg-turbo 3 4 113 117
libtiff 3 5 245 250
libxml2 3 5 129 134
pcre 4 4 315 319

Total 27 1329 1356

TABLE III: Dataset used for the experiments targeting RQ1

Table III lists the programs and the statistics of the finger-
prints we use for this experiment. We choose these programs
because they are popular open-source programs, and more
importantly, prior works [45, 20, 52] have documented bugs
in them along with proof of concept inputs. We use these
documented bugs to generate the fingerprints for this experi-
ment. For each bug, we generate inexact duplicate bugs using
the AFL fuzzer [53] configured in crash exploration mode.
Then, we insert the documented bugs to the datastore to build
our reference fingerprint set. For each program, we exclude
one documented bug when building the reference fingerprint
set. This excluded bug, and all the inexact duplicates derived
from this bug, form our negative test set (i.e., fingerprints
that do not have a related fingerprint in the reference set).
All other documented bugs and their inexact duplicates form
our positive test set. As the documented bugs are also in the
reference set, these bugs form the exact test set while the
inexact duplicates of these bugs form the inexact test set.

Given that our positive test set is significantly larger than
our negative test set, we take an additional step of balancing
our test sets. For each program, we randomly remove the bugs
in the inexact test set such that we have the same number
of bugs in the positive test set (including both the exact and
the inexact test sets) and the negative test set. To minimize
bias, we select crashes with equal probability, and ensure
that crashes for each bug are as close to the mean of the
total crashes in the positive test set. Following this procedure,
each experiment is run 20 times, and we report the average
scores. In total, our collection includes 27 bugs in the exact
test set, 1,329 bugs in the inexact test set, and 1,356 bugs in
the negative test set.

1) Effectiveness of Indexing:
We first examine the effectiveness of our indexing ap-

proach. For this experiment, our goal is to determine whether
our indexing technique can index similar fingerprints to the
same bucket. For comparison, we compare our LSH approach
with top-k, a common indexing technique used by many
previous works [7, 12, 35].

For LSH, values for b and r must be chosen appropriately.
In tuning these parameters, we ensure that b × r = 256
(i.e., the number of MinHash signatures for each fingerprint).
Additionally, we select values for b and r that allow us
to correctly retrieve candidate fingerprints. We compute the
estimated similarity between a pair of fingerprints and the
probability that LSH will consider a pair of fingerprints to
be truly similar as 1− (1−sr)b, where s denotes the estimated
Jaccard similarity.

Intuitively, the optimal values for b and r should find a
balance between the Jaccard similarity and the probability
that LSH deems a pair of fingerprints similar. If the sensitivity
is too low (i.e., LSH only finds a pair of fingerprints to be
similar when their Jaccard similarity is extremely high), then
we could easily miss inexact duplicate fingerprints. On the
other hand, if the sensitivity is too high (i.e., LSH finds a



pair of fingerprints to be similar even when their Jaccard
similarity is extremely low), then we need to perform a large
amount of unnecessary comparisons of fingerprints that do
not match at all. Extensive evaluations from parameter tuning
show that b = 64, r = 4 strikes the best balance.
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Figure 2: Performance of Top-k vs LSH indexing

Figure 2 shows the results of the top-k indexing and
LSH 64 averaged over 20 runs. In every case except
libarchive, we attained higher recall than top-k index-
ing. While the top-k algorithm performs better on certain
benchmarks in terms of precision, for us, recall is more
important at this stage because candidates in the same bucket
are then passed to the similarity comparison phase where
false positives are filtered.

2) Effectiveness in Filtering Duplicates:
While our indexing component, LSH, can bucket similar

fingerprints into the same bucket with high recall, it also
includes some unrelated fingerprints to the same bucket, as
evidenced by the lower precision. Therefore, our MinHashing
component then takes the fingerprints in the same bucket,
determines the similarity between fingerprints, and reports
fingerprints that are similar while filtering out unrelated
fingerprints.

In this experiment, we compare our MinHashing approach
with previous similarity comparison approaches, including
top-k prefix match [35, 12], TraceSim [46], major and minor
stack hashing [29, 33, 22]. Although TraceSim is open
sourced2, the implementation of the machine learning based
hyperparameter generation is neither publicly available nor
documented. Thus, to allow for a fair comparison, for each
program, we run TraceSim with all possible combinations of
the hyperparameters α, β, and γ, as well as the threshold
value, in the range of 0.1 and 1, with a step of 0.1. We
select the hyperparameters and threshold values that yield the
highest F1 score for each program.

2https://github.com/traceSimSubmission/trace-sim
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Figure 3: Comparison of contemporary crash similarity approaches

Figure 3 shows the results averaged over 20 runs. For the
similarity among exact duplicates, all approaches perform
equally well having an F1 score of 1. However, in the more
realistic experiments that use inexact duplicates during the
query phase, CrashSearch outperforms the others in four
of the six cases: JasPer, libjpeg-turbo, libxml2
and pcre. For the other two, CrashSearch and TraceSim
perform equally well, outperforming the others on libtiff.
Among these programs, CrashSearch achieves significantly
better results than other approaches in libjpeg-turbo
and libxml2. These two programs contain bug instances
that crash at different functions (e.g.,CVE-2018-11213 for
libjpeg-turbo and CVE-2017-9049 for libxml2), so
approaches that only use stack backtraces struggle to match
the inexact duplicate fingerprints of these bugs. The results
also show that our MinHashing component can detect and
filter out all false positives that the LSH component gener-
ates, as our precision increases compared to the precision of
LSH indexing, for all programs. A closer inspection of the
libxml2 bug relationships (not shown) reveals that while
four CVEs have significantly different stack backtraces, that
is due to a macro used by four separate functions. Therefore,
all functions that utilize the macro are affected, and so each
seemingly appears to be a different bug. TraceSim fails to
identify 2 of the CVEs as similar. Since we utilize additional
features besides the stack backtrace (i.e., the signal, the bug
type, and the crashing line of code), we are able to succeed
where TraceSim fails. Additionally, TraceSim induces 3 false
positives.

3) Insights and lessons learned:
Overall, the experiments show that the combined usage of

LSH indexing and MinHash worked exceedingly well for
crash triaging. For inexact duplicates, on average, the F1
score of CrashSearch is 11% more than TraceSim, 15% more
than top-k prefix match, 19% more than major hashing, and



31% more than minor hashing. There is, however, room for
improvement; for example, with programs like pcre that
heavily use macros.

B. RQ2: Is CrashSearch efficient enough to support large
software projects?

To explore our performance in more operational settings
that could, for example, include tens of thousands of known
bugs [47], we conduct experiments that artificially inflate the
size of the database to compare the scalability with state-
of-the-art approaches like TraceSim [46] and top-k prefix
match [35].

To select the query fingerprints, we use a subset of
the test fingerprints used in §V-A2. Specifically, for each
of the six real world programs, we select the fingerprint
whose stack backtrace contains the smallest amount of stack
frames, the fingerprint whose stack backtrace contains the
largest amount of stack frames, the fingerprint whose stack
backtrace contains the smallest amount of characters, and the
fingerprint whose stack backtrace contains the largest amount
of characters. From the set, we remove duplicates as some
fingerprints could both have the smallest amount of stack
frames and the smallest amount of characters, and finalize a
set of 30 fingerprints in total. We then synthetically duplicate
this set of fingerprints into different configurations by artifi-
cially altering features such as the bug type and the crashing
function, generating databases with 300 fingerprints, 3,000
fingerprints, 10,020 fingerprints, and 30,000 fingerprints. For
each configuration, we run the approach five times and report
the average.
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Figure 4: Query time versus database cardinality

The results are shown in Figure 4. For databases with up
to 300 reference fingerprints, the overhead between TraceSim
and CrashSearch is negligible. However, as more reference
fingerprints are inserted into the database, the performance
of TraceSim degrades significantly. The results of TraceSim
also contains an outlier that takes significantly longer time

(25.19 seconds in a database with 30,000 fingerprints) than
others. The fingerprint causing this outlier contains a large
stack backtrace (with 251 stack frames) due to recursion.

1) Insights and lessons learned:
The performance benefits of CrashSearch are not sur-

prising given the well-known efficiency of the underlying
techniques we choose to implement. Additionally, though it
may seem that the query time for TraceSim is acceptable, this
is not necessarily the case because, even after deduplication,
a fuzzing campaign may produce hundreds of crashing inputs
in a short period of time [29]. Moreover, in settings where one
might choose to run triaging at the time of fuzzing (e.g., as
suggested by Das et al. [20] or, more generally, to assist with
directed fuzzing [10]), then the increased overhead would
lead to unacceptable slowdowns. Lastly, while top-k prefix
match runs fast, it does so at the cost of lower accuracy,
and falls short of the ultimate goal: reducing the amount of
manual effort expended by analysts. Our experiment shows
that even for large projects, the query time for CrashSearch
would still be acceptable.

Average

Program #
Bugs

Duplicate
Groups Bugs Shared

Sequences

JasPer 32 28 4 5 ⊂ 9
libarchive 21 14 2 6 ⊂ 9
libxml2 38 15 3 7 ⊂ 15
FFmpeg 49 38 6 11 ⊂ 19
ImageMagick 106 100 7 8 ⊂ 13
PHP 116 18 6 8 ⊂ 17
Wireshark 114 79 8 21 ⊂ 38

TABLE IV: Duplicate bug groups and shared sequences

C. RQ3: Can CrashSearch help triagers more easily find
relationships among bugs?

We now highlight CrashSearch’s ability to help triagers
analyze the relationships among bugs. For this experiment,
we take a more in-depth look at JasPer, libarchive,
and libxml2 (from the dataset in §V-A) as well as four
other popular open-source programs: ImageMagick, PHP,
FFmpeg, and Wireshark. We choose to study these eight
programs because we can amass bug reports of these pro-
grams spanning multiple years. Note that, since previous
work focuses solely on deduplication and does not include
similar techniques for understanding the relationships among
bugs (as shown in Table I), we do not have a state-of-the-art
to compare in this experiment.

To analyze the relationships, we first use the query com-
ponent of CrashSearch with a similarity threshold of 1

3 to
extract groups of likely duplicate bugs solely based on the
features extracted from their bug reports. Next, we use the
relationship component of our approach, which leverages
BIDE, to extract shared function call sequences from the
stack backtraces for each group. We selected a conservative
threshold of 1

3 based on experiments in §V-A to ensure that



we do not miss potential duplicates. Moreover, in real-world
settings, a triager may not have ground truth readily available
in order to find the optimal threshold. Although using a
conservative configuration can lead to false positives, these
will be eliminated later by the analysis component.

Table IV shows the number of bugs in our dataset, the
number of groups of duplicate bugs we find, the average
amount of bugs in each group, the average shared call
sequences for all bugs in the group. In general, we find that
many bugs in the same group have relationships in their call
sequences. For instance, among all groups for PHP, bugs
share on average 8 of 17 function call sequences. Similarly,
for ImageMagick on average bugs share 8 of 13 function
call sequences. Moreover, the same pattern is evident for
JasPer. As an example, Table V list the reduced groups
of duplicate bugs we find for JasPer and ImageMagick
after using BIDE to examine the relationships. To shed fur-
ther light on our findings and lessons, we focus on JasPer
and ImageMagick as these two programs each contain bugs
with strong relationships.

main

jas_image_decode

jp2_decode

jp2_box_get

jp2_box_destroy

jp2_colr_destroy jp2_cdef_destroy

jp2_free

CVE-2016-8887

CVE-2017-9782

CVE-2017-6850

Figure 5: Example of relationship among bugs in JasPer

a) Case Study I:
We analyzed 8 bugs for Jasper (CVE-2017-9782, CVE-

2018-19542, CVE-2018-19543, CVE-2021-26926, CVE-
2021-26927, CVE-2021-3272, CVE-2021-3443, and CVE-
2021-3467) submitted over a 5 year period that our query
component correctly flagged as inexact duplicates of each
other. Using the analysis component we found that these bugs
all share the same crashing sequence (see CVE-2017-9782
in Figure 5). Interestingly, 5 of these bugs were repeatedly
submitted by different testers over a few months. It was not
until the last submission that a contributor discovered that
all 5 bugs were related and could be narrowed down to one
root cause [2]. Even then, the contributor did not realize the
connections to 3 other bugs namely, CVE-2017-9782, CVE-

2018-19542, and CVE-2018-19543.
We also found strong connections between CVE-2016-

8887 and CVE-2017-6850, submitted in 2016 and 2017
respectively. Specifically, these bugs share 5 of 6 function
sequences. Figure 5 illustrates the call sequences of these
bugs. To confirm that these bugs were indeed duplicates, we
manually analyzed the bugs using both static and dynamic
analysis. For that painstaking process, we used contemporary
tools (including Mozilla rr [36], GDB debugger, and
Zelos CrasHD [54]), to perform debugging and dataflow
analysis. We discovered that both bugs do share the same
underlying issue: the use of an uninitialized variable.

Verification

Program Bugs
Duplicate

Type
Static

Analysis
Dynamic
Analysis

CVE-2016-7515
CVE-2016-7519 Exact � �

CVE-2016-7523
CVE-2016-7524 Exact � �

CVE-2016-7518
CVE-2017-6500 Exact � �

CVE-2016-8862
CVE-2016-8866
CVE-2017-7275

Exact � �

CVE-2019-10650
CVE-2019-11597
CVE-2019-15141

Exact � �

CVE-2019-13295
CVE-2019-13297 Exact � �

ImageMagick
CVE-2019-13302
CVE-2019-13308 Exact � �

CVE-2019-13304
CVE-2019-13305
CVE-2019-13306

Exact � �

CVE-2018-16412
CVE-2018-16413 Inexact � �

CVE-2016-7514
CVE-2016-7525 Inexact � �

CVE-2018-11625
CVE-2019-11598 Inexact � �

CVE-2017-11533
CVE-2019-19948 Inexact � �

CVE-2016-7515
CVE-2016-7518
CVE-2017-6500

Inexact � �

JasPer

CVE-2017-9782
CVE-2018-19542
CVE-2018-19543
CVE-2021-3272
CVE-2021-3443
CVE-2021-3467
CVE-2021-26926
CVE-2021-26927

Inexact � �

CVE-2016-8887
CVE-2017-6850 Inexact � �

CVE-2016-10251
CVE-2017-6852 Inexact � �

CVE-2017-5499
CVE-2017-5500 Inexact � �

The � symbol implies that the specific analysis was performed, while the �
symbol means otherwise. Static analysis is done via source code inspection,
while dynamic analysis is a combination of debugging and dataflow analysis.

TABLE V: Duplicates flagged for JasPer and ImageMagick.

b) Case Study II:
For ImageMagick, we examine the relationship among 4

bugs reported by 2 different testers in 2016 and 2019. Figure
6 shows the graph constructed from the stack backtraces.



Using CVE-2016-7523 as a query, we retrieved CVE-2016-
7524, CVE-2019-13295, and CVE-2019-13297 with 100%,
35% and 35% similarity scores respectively. Leveraging
the analysis component, we discovered that in addition to
CVE-2016-7524 and CVE-2016-7524, CVE-2016-7524 and
CVE-2019-13295 also shared exact sequences. As a result,
we could easily isolate and analyze the two sets of bugs
separately to confirm that they were duplicates. We found
that CVE-2016-7523 and CVE-2016-7524 were submitted by
the same tester with two test cases that crash the program
at different line numbers. Digging deeper we found that the
crashing line of code for both bugs is the same because the
developer replicated the code in different locations of the
source file. Similarly, we confirmed that CVE-2019-13295,
and CVE-2019-13297 shared the same root cause and were
duplicates of CVE-2016-7523.

main

…

CVE-2019-13295

CVE-2016-7523

CVE-2019-13297

CLIOption

CLISimpleOperatorImages

CLISimpleOperatorImage

AdaptiveThresholdImage

CLINoImageOperator

ReadImages

ReadImage

ReadMETAImage

parse8BIM
CVE-2016-7524

Figure 6: Relationship among four Common Vulnerability and Exposures
assigned for ImageMagick over a three year period.

1) Insights and lessons learned:
Given how easily we found the duplicates, we were sur-

prised that these bugs were not marked as duplicates in the
vulnerability databases [34, 37, 3]. To gain insights into why
multiple CVEs were assigned for the same bug, we closely
examined these vulnerability databases and bug trackers.
Our findings reveal several common causes for duplicates:
(i) developers being unaware of CVE requests, (ii) testers
opening separate issues for each test case that triggers the
same bug (iii) the same bug being triggered in a different
function or line number on a different program version, (iv)
multiple testers submitting the same bug at different points
in time and (v) incorrect fixes. Table V lists all the duplicate
CVEs we discovered for ImageMagick and JasPer and
the methods we used to verify the duplicates. We also

discovered 15 duplicates for FFmpeg, 4 for livarchive,
2 for libxml2, 17 for PHP and 5 for Wireshark.

These findings aptly show that previously known bugs
can, and will, appear again and again in later versions of a
program, albeit with slightly varied fingerprints [43]. Based
on our experiences, we recommend a common data format
(see Figure 7) for identifying and analyzing the relationships
among duplicates and inexact duplicates. The code and
datastore are available3. Entries in the datastore abide by the
format below.

Figure 7: Example format.

D. RQ4: Can CrashSearch effectively reduce the number of
crashes triagers have to analyze?

To evaluate how well CrashSearch can be used to reduce
the number of crash reports generated by automated testing,
we simulated a real-world scenario where four independent
groups submit different sets of crash reports for the same
set of programs. We use a subset of the programs used in
§V-A: libarchive, libjpeg-turbo, libtiff, and
libxml2. Our fuzzers include AFL, Angora, FairFuzz,
and MOpt. We choose these four fuzzers because of their
popularity and the significance of the differences among their
performance [25]. Our selection reflect different points in the
fuzzing space — for example, MOpt offers a unique muta-
tional scheduling scheme and FairFuzz applies a novel seed
selection procedure that attempts to guide the fuzzer toward
rarely executed paths. We only submit the unique crashes
by each fuzzer, as determined by its built-in deduplication
processes. In total, there are 1055 crashes corresponding to
13 unique bugs.

We assume that the triager receives the crash reports found
by the corresponding groups in independent batches. The
triager then runs CrashSearch as part of their workflow. In
the beginning, the triager has an empty datastore and uses
CrashSearch to initialize it with the unique fingerprints from

3https://github.com/kedjames/crashsearch-triage
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Figure 8: The number of crashes generated by four fuzzers and the average
number of crashes after filtering with CrashSearch. The numbers in the
parenthesis after the program names represent the number of unique bugs
for such program associated with the crashes.

the first batch of crash reports. The datastore is updated
after each batch of reports are processed by CrashSearch.
We perform this experiment 24 times to cover all possible
inter-arrivals of bug reports by independent groups. Figure 8
shows the results. Our results show that CrashSearch reduces
the number of crash reports received per project from 263 on
average to 10 or less unique fingerprints. On average, after
CrashSearch filters the crash reports, each unique bug in a
program contains only two crash reports. More importantly,
regardless of the coverage of fingerprints in the initial data-
store, in the end, there was at least one fingerprint for each
of the bugs in the ground truth.

a) Insights and lessons learned:
Despite (or maybe in spite of) the fact that we choose

popular graybox fuzz testing suites, each fuzzer generated
tens of unique crash reports in a single day, but the vast
majority of these crashes were instances of the same flaws.
This finding corroborates that of Wang et al. [49] that shows
that no single fuzz testing technique significantly outperforms
the others. Even at a conservative estimate of 0.5 man hours
per report (i.e., well below the findings of Anvik et al. [5]),
that would relate to about 2 weeks of work per project,
on average. With multiple independent groups running their
fuzzing campaigns for longer periods of time than we did,
the deluge of duplicates would be unbearable (taking more
than 3 months in total). Indeed, if the same developers were
responsible for the 4 libraries listed above, the triager(s)
would need to sift through over a thousand crash reports
to find the handful of bugs within. Armed with CrashSearch,
however, such winnowing would be greatly reduced as the
triager would only have to inspect less than 1/40 of the
reports. Under the same conservative assumption of 0.5
man hours per report, even if the same developers were
responsible for all 4 libraries, a small team of 2 developers

would now be enough to analyze the crashes within one day.

VI. LIMITATIONS

Since we use features including the signal and the crashing
line, CrashSearch supports only bugs that result in a crash.
For other bug types, we could potentially use different set
of features to generate bug fingerprints, but we leave the
exploration as future work.

For our evaluation, the main threat of validity is the
size of our dataset and how representative it is. While
our dataset includes a limited number of unique bugs, our
dataset includes popular programs in a variety of categories,
and we followed the same procedure to generate duplicate
fingerprints as prior studies [45, 9]. Therefore, we believe
that our findings regarding CrashSearch should apply to real-
world fuzzing campaigns.

VII. CONCLUSION

We present an end-to-end design for identifying instances of
known bugs given the symptoms of a crash. Our solution
utilizes a novel combination of the MinHash algorithm and
Locality Sensitive Hashing. We leverage MinHash to effi-
ciently estimate the Jaccard similarity of features, and we
utilize Locality Sensitive Hashing during the indexing phase
to eliminate the need for pairwise comparisons. We evaluated
the effectiveness of our approach and showed that it is both
more accurate and faster than state-of-the-art approaches for
stack backtrace similarity detection. More importantly, our
investigations demonstrate that the approach helps simplify
the work flow for an analyst inspecting crashes during triage,
and help find relationships among crashes that may not be
readily obvious.
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