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ABSTRACT

For the most part, forensic analysis of computer systems
requires that one first identify suspicious objects or events,
and then examine them in enough detail to form a hypoth-
esis as to their cause and effect [34]. Sadly, while our ability
to gather vast amounts of data has improved significantly
over the past two decades, it is all too often the case that
we tend to lack detailed information just when we need it the
most. Simply put, the current state of computer forensics
leaves much to be desired. In this paper, we attempt to im-
prove on the state of the art by providing a forensic platform
that transparently monitors and records data access events
within a virtualized environment using only the abstractions
exposed by the hypervisor. Our approach monitors accesses
to objects on disk and follows the causal chain of these ac-
cesses across processes, even after the objects are copied into
memory. Our forensic layer records these transactions in a
version-based audit log that allows for faithful, and efficient,
reconstruction of the recorded events and the changes they
induced. To demonstrate the utility of our approach, we
provide an extensive empirical evaluation, including a real-
world case study demonstrating how our platform can be
used to reconstruct valuable information about the what,
when, and how, after a compromised has been detected.
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D.4.6 [Security and Protection]: Information flow, in-
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1. INTRODUCTION
Today, postmortem intrusion analysis is an all too fa-

miliar problem. Our devices are repeatedly compromised
while performing seemingly benign activities like browsing
the Web [32], interacting on social-networking websites, or
by malicious actors that use botnets as platforms for var-
ious nefarious activities [10]. Sometimes, the threats can
also arise from the inside (e.g., corporate espionage), and
often lead to substantial financial losses. Underscoring each
of these security breaches is the need to reconstruct past
events to know what happened and to better understand
how a particular compromise may have occurred. Sadly, al-
though there has been significant improvements in computer
systems over the last few decades; data forensics remains a
very tedious process; partly because the detailed informa-
tion we require to reliably reconstruct events is simply not
there, when we need it the most [9].

Loosely speaking, recent efforts in data forensic research
have focused on tracking changes to file system objects by
using monitoring code resident in kernel space, or by making
changes to the application binary interface. However, with-
out proper isolation these approaches are subject to tamper-
ing and therefore can not provide strong guarantees with re-
spect to the integrity of the recorded events. Malicious users
can, for instance, inject code into either kernel or user space,
thereby undermining the integrity of the logs maintained by
the tracking mechanism. Virtualization [15] provides a po-
tential avenue for enabling the prerequisite isolation criteria
by providing a sandbox for operating system code and appli-
cations. For example, a hypervisor can mediate disk accesses
at the block level by presenting a virtual disk to the virtual
machine (VM). An obvious disadvantage, however, is that
this abstraction suffers from a “semantic gap” problem [3],
in which the mapping between file-system objects and disk
blocks are lost, thereby making it difficult to track objects
beyond the disk layer.

In this paper, we propose an approach for monitoring ac-
cesses to data in a virtualized environment while bridging
the semantic gap issue. Specifically, we provide an approach
for monitoring accesses to data that originated from disk,
and capture subsequent accesses to that data in memory—
even across different processes. Our approach achieves this
goal without any monitoring code resident in the virtual ma-
chine, and operates purely on the abstractions provided by
the hypervisor. Operating at this layer mandates that we
access the disk at the block layer, memory at the physical
frame layer and system calls at the instruction layer—all of
which offer substantial engineering challenges of their own.
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In that regard, our main contributions are in the design and
implementation of an accurate monitoring and reconstruc-
tion mechanism that collates and stores events collected at
different levels of abstraction. We also provide a rich query
interface for mining the captured information. This provides
the forensic analyst with detailed information to aide them
in understanding what transpired after a compromise (be
it a suspicious transfer of data or modification of files) has
been detected. We also provide an extensive empirical anal-
ysis of our platform, including a real world case study using
our framework.
The remainder of the paper is organized as follows. We

first present some background and related work in Section 2.
Sections 3 and 4 describes our design and architecture, in-
cluding the various monitoring subsystems and the respec-
tive challenges in combining data from the various levels
of abstraction. In Section 5, we present a detailed empir-
ical evaluation of the runtime overheads and accuracy of
our logging and reconstruction techniques. To highlight the
strength of our approach even further, we present a case
study in Section 6 showing how the framework was used
to uncover interesting forensic evidence from a laptop that
had been connected to a public network for one week. We
discuss attacks on, and limitations of, our current design in
Section 7 and conclude in Section 8.

2. BACKGROUND AND RELATED WORK
Generally speaking, computer forensics attempts to an-

swer the question of who, what and how after a security
breach has occurred [34]. The fidelity of the recorded infor-
mation used in such analyses is highly dependent on how the
data was collected in the first place. Keeping this in mind,
the approaches explored in the literature to date can be
broadly classified as either client-based approaches (that use
application or kernel-based logging) or virtualization-based
approaches (that use hypervisor based logging). While client-
based approaches can provide semantic-rich information to
a security analyst, their fidelity can be easily undermined as
the logging framework is usually resident within the same
system that it is monitoring. Hypervisor-based approaches,
on the other hand, are generally thought to lack the seman-
tic detail of client-based approaches, but can achieve greater
resistance to tampering as the logging mechanisms reside in
privileged sandboxes outside the monitored system.

Client-based Approaches.
File-system integrity and verification has a long history,

with some early notable examples being the work of Spafford
et al. on Tripwire [21] and Vincenzetti et al. on ATP [37];
both of which use integrity checks to verify system binaries
(e.g., /sbin/login). Extending this idea further, Taser [14]
detects unauthorized changes to the file-system and reverts
to a known good state once malfeasance is detected. Solitude
[16] extends this concept even further by using a copy-on-
write solution to selectively rollback files, thereby limiting
the amount of user data that would be lost by completely
reverting to the last known good state. These systems do
not record evidence on how an attack occurred and the data
that was compromised instead they are geared primarily at
efficient restoration back to a known good state.
More germane to our goals are systems such as PASS [28]

and derivatives thereof (e.g., [29]) that provide data prove-
nance by maintaining meta-data in the guest via modifica-

tions to the file-system. However, this requires extensive
guest modifications and shares the same problems of client-
based systems.

Virtualization-Based Approaches.
In order for virtualization-based approaches to work in

a data forensic framework, they need to first overcome the
disconnect in semantic views at different layers in an op-
erating system [3, 12]. In particular, Chen et al. [3] pro-
vides excellent insight into advantages and disadvantages of
implementing secure systems at the hypervisor layer. The
challenges are generally related to performance and the dif-
ference in abstractions between the hypervisor layer and the
guest virtual machine. While the issue of performance has
been addressed as hypervisor technologies mature, the “se-
mantic gap” still remains. Antfarm [19], Geiger [20] and
VMWatcher [18], have successfully bridged this gap for a
given layer of abstraction, but to the best of our knowl-
edge, no single work has tackled the problem of bridging
the gap for a set of interconnected layers of abstraction (i.e.,
spanning disk, memory and processes) while preserving the
causal chain of data movement.

Closely related in goals is the approach of King et al. [22]
which provides an event reconstruction approach for relat-
ing processes and files. BackTracker reconstructs events over
time by using a modified Linux kernel to log system calls and
relate those calls based on OS-level objects [23]. The se-
mantic gap issue is bridged by parsing the memory contents
of the virtual machine during the introspection time using
a EventLogger compiled with the virtual machine’s kernel
headers. This approach is fragile as any changes to the guest
kernel will undermine their approach [23, 22]. Similarly, in
their VM-based approach, it is not possible to monitor op-
erating systems that are closed-source. While BackTracker
made significant strides in this area, we find that relying
on just system calls to glean OS state is not enough for a
number of reasons. For instance, since it does not monitor
memory events, data movements (such as a process sending
a file over a network socket) can only be inferred as “poten-
tial” causal relationships; neither can it detect the exact ob-
ject that was sent over the network. To be fair, these were
not part of its stated goals. By contrast, the causal rela-
tionships we build attempts to capture access chains across
processes, all-the-while storing the exact content that was
accessed and/or modified.

Also relevant are the techniques used by Patagonix [27]
and XenAccess [31] that employ forms of memory inspection
for VM introspection. Patagonix’s goal is to detect changes
between binaries on disk and their image in memory. Xe-
nAcess is positioned as an extensible platform for VM mon-
itoring. Our goals and approach is different in that we use
signals from different layers of the VM (i.e., the system-call,
memory and storage layers) to correlate accesses to a mon-
itored object. Lastly, this work significantly extends our
preliminary work [24].

3. DATA TRACKING
Our primary goal in this paper is to enable fast and ef-

ficient recording of events involving a monitored data store
(e.g., a disk partition), at a granularity that allows a se-
curity analyst to quickly reconstruct detailed information
about accesses to objects at that location. Conceptually,
our approach is composed of two parts, namely an efficient
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monitoring and logging framework, and a rich query system
for supporting operations on the recorded data. To support
our goals, we monitor events to a collection of locations L

(i.e., memory, disk or network) and record read or write
operations on L. We denote these operations as O. Any
additional operations (e.g., create or delete) can be modeled
as a combination of these base operations. We tie these ac-
cesses to the corresponding causal entity that made them,
to ensure that a forensic analyst has meaningful semantic
information for their exploration [2].
The approach we take to capture these causal relation-

ships is based on an event-based model, where events are
defined as accesses, O, on a location L caused by a some
entity, i.e., Ei(O,L) → ID. Loosely speaking, an entity is
modeled as the set of code pages resident in a process’ ad-
dress space during an event. The distinct set of code pages
belonging to that process is then mapped to a unique iden-
tifier. This event-based model also allows us to automati-
cally record events that are causally related to each other,
and to chain the sequences of events as

⋃n

i
Ei. Intuitively,

events are causally related based on the same data being
accessed from multiple locations; i.e., we consider E0(O,L)
to be causally related to E1(O

′, L′) if the same data object
resides in L and L′.
Since the hypervisor views the internals of a virtual ma-

chine as a black box, a key challenge is in realizing this model
with minimal loss of semantic information. This challenge
stems from the fact that the monitoring subsystem gets dis-
joint views of operational semantics at different levels of ab-
straction. For example, a read system call operates with pa-
rameters in virtual memory and the guest file system layer,
which then spawns kernel threads to translate the file system
parameters into blocks; leading to the request finally being
placed on the I/O queue. Without any code in the guest,
the challenge is in translating these requests and chaining
them together as a single event.
As we show later, one contribution of this work lies in our

ability to link together the various events captured within
the hypervisor. In what follows, we present our architecture
and the design choices we made in building a platform that
realizes the aforementioned model.

3.1 Architecture
The monitoring framework is built on top of Xen [1] with

hardware-virtualization [26]. At a high level, the Xen hy-
pervisor is composed of a privileged domain and a virtual
machine monitor (VMM). The privileged domain is used to
provide device support to the unprivileged guests via emu-
lated devices. The VMM, on the other hand, manages the
physical CPU and memory and provides the guest with a
virtualized view of the system resources. This allows the
monitoring framework to monitor—from the hypervisor—
specific events that occur in the virtual machine.
The framework is composed of three modules that monitor

disk, memory, and system calls (see Figure 1). The modules
are fully contained within the hypervisor with no code res-
ident in the virtual machine. The system is initiated by
monitoring accesses to a specific set of virtual machine disk
blocks on the virtual disk. The storage module monitors all
direct accesses to these blocks and their corresponding ob-
jects, while subsequent accesses to these objects are tracked
via the memory and system call modules. Specifically, the
memory module in conjunction with the system call module

allows the framework to monitor accesses to the object af-
ter it has been paged-in to memory, and also builds causal
relationships between accesses. The memory module is also
responsible for implementing the mapping function that al-
lows us to tie events to specific processes.

Xen Hypervisor (modified)

Audit Log

Guest OS (unmodified)

User
Apps

User Space

Kernel Space

open(), read(),
write(), mmap(), etc.

Storage
Subsystem

Memory
Subsystem

System Call 
Subsystem

Trampoline Modified
Memory

OS Task
Switching

Forensic Query Interface

Event

Hooks
Modified
CR3

Disk I/O

Shared 
I/O 
Ring

SYSENTER

System Call Handler

Figure 1: Overall architecture of the forensic platform, depicting
the memory, storage and system call layers

As a result of our design, each of these modules have
to bridge the “semantic gap” prevalent at that layer of ab-
straction; i.e., blocks to files, machine physical addresses
to guest virtual addresses, and instructions to system calls.
Since the framework is built to log events happening in the
guest, a single guest event might trigger multiple hypervisor
events crossing various abstraction boundaries, e.g., consec-
utive writes to a file by a text editor will require disk ob-
jects to be mapped back to the file, writes to the page in
the guest’s memory has to be mapped to the actual page in
physical memory, etc. To effectively observe these linkages,
our modules work in tandem using a novel set of heuristics
to link events together. These events are stored in a version-
based audit log, which contains timestamped sequences of
reads and writes, along with the corresponding code pages
that induced these changes. We now turn our attention to
the specific functionality of each of the monitoring modules.

3.1.1 Storage Subsystem

The storage module is the initialization point for the entire
monitoring framework. That is, a specific range of virtual
machine disk blocks are monitored via a watchlist main-
tained by this module. Any disk accesses to the objects on
the watchlist triggers updates to the storage module. The
accesses to blocks on the watchlist also notifies the memory
module to monitor the physical page where the blocks are
paged-in. In what follows, we first discuss how we monitor
access at the block layer.

52



Driver

Physical Disk

Monitored 
Blocks

Virtual 
Disk

Storage 
Monitoring 
Module

VMExit
Shared 
I/O 
Ring

I/O Completion
Notification

Timestamp, 
Operation

Linux AIO

Read/Write
Time & Location

Xen Hypervisor (modified)

Memory Monitoring Module

Event

Hooks
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I/O Request
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Figure 2: Overview of the storage monitoring module, showing
our hooks for monitoring disk I/O at the Xen Storage and Linux
AIO layers

Figure 2 describes the Xen storage model and the enhance-
ments we made to monitor disk I/O. In Xen, block devices
are supported via the Virtual Block Device layer. Guests
running on top of Xen see a virtual hard disk and therefore
cannot directly modify physical disk blocks. Specifically, all
accesses are mediated through the Xen storage layer, which
exposes an emulated virtual disk. All I/O requests from the
guest are written to an I/O ring, and are consumed by the
Xen storage layer.
The storage module monitors the physical blocks on this

virtual disk and automatically adds them to watchlist it
maintains. As guests place their I/O requests onto the
shared ring, our monitoring code is notified via a callback
mechanism of any accesses to the blocks on the watchlist.
This allows us to timestamp a request as soon as it hits the
I/O ring—which is critical in matching the access with the
syscall that made the request, enabling the memory module
to link a disk access with a specific process. Finally, the
storage module waits for all reads/writes to be completed
from disk before committing an entry in our logging data-
structure.
As alluded to above, accesses to disk blocks typically hap-

pen as the result of a system call. In order to tie these two
events together, it is imperative that we also monitor events
at the system call layer. Next, we examine how we achieve
this goal.

3.1.2 System Call Monitoring Subsystem

The system call module is responsible for determining
when the guest makes system calls to locations of interest
(L = disk, memory or network), parsing the calls and build-
ing semantic linkage between related calls. First, we describe
how the module monitors the system calls and then discuss
how they are used to build semantic linkages in conjunction
with the memory monitoring module.

Monitoring System Calls

The use of hardware virtualization makes the efficient track-
ing of system calls in the guest an interesting challenge. To
see why, notice that system calls on the x86 platform can
be made by issuing either a soft interrupt 0x80 or by using
fast syscalls (i.e., SYSENTER). Modern operating systems use
the latter as it is more efficient. This optimized case in-
troduces an interesting challenge: a traditional 0x80 would
force a VMExit (thereby allowing one to trap the call), but
fast syscalls on modern hardware virtualized platforms do

not induce a VMExit. However, syscalls must still retrieve
the target entry point (in the VM’s kernel) by examining
a well-known machine specific register (MSR)1. Similar ap-
proaches for notification on system call events at the hy-
pervisor layer have also been used recently in platforms like
Ether [7].

Since the hypervisor sets up the MSR locations, it can mon-
itor accesses to them. Our solution involves modifying the
hypervisor to load a trampoline function (instead of the ker-
nel target entry) on access to the MSR for syscalls. The tram-
poline consists of about 8 lines of assembly code that simply
reads the value in eax2 and checks if we are interested in
monitoring that particular system call before jumping into
the kernel target point. If we are, then the memory mod-
ule (Section 3.1.3) is triggered to check the parameters of
the call to see if they are accessing objects on the memory
module’s watchlist. The trampoline code runs inline with
virtual machine’s execution and does not require a trap to
the hypervisor, avoiding the costly VMEXIT.

Capturing the Semantic Linkage

The system call module in conjunction with the memory
module is responsible for building the semantic linkage be-
tween a set of related calls, for example, a read() call on
a file whose blocks we monitor and a subsequent socket
open(),write() of the bytes to a network socket. In order
to achieve this goal we selectively monitor types of syscalls
that could yield operations in our event model.

Specifically, we monitor syscalls that can be broadly classi-
fied as involving (1) file system objects, e.g., file open, read,
write (2) memory resident objects, e.g., mmap operations
(3) shared memory objects, e.g., ipc, pipes and (4) network
objects, e.g., socket open and writes. As described earlier
the system call module will monitor these calls and parse the
parameters. The approach we then take to create linkages
between such calls is straightforward: we simply examine the
source and destination parameters to infer data movement.
In this example, the system call monitor will be triggered on
each of the file read(), network socket open() and write()

calls. Since the source parameter of the read() references
a monitored page, the memory module notifies the system
call module of the offending access, and also adds the corre-
sponding page of the destination parameter (e.g., the buffer)
to its watchlist. When the memory module is later triggered
because of the write on a network socket, that access will also
be returned as an“offending”access since it references a page
that is now on the memory module’s watchlist. As a result,
the system call module will connect the two calls and build
the semantic linkage. Unlike other approaches that attempt
to infer causal linkages based on data movements, our plat-
form is able to accurately and definitively link events that
are causally related. We now discuss the specifics of how the
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Figure 3: Overview of the memory monitoring module, showing
the hooks needed for tracking of monitored objects in memory
and for logging the offending processes.

memory module decides if a particular event is accessing a
monitored object.

3.1.3 Memory Monitoring Subsystem

The key function of this module is to track accesses to
monitored objects once they are resident in memory. Recall
that the initial access to L on disk causes the storage module
to notify the memory module of potential data movement.
This access causes a page fault, as the object has not yet
been paged into memory. Since Xen manages the physical
memory and hardware page tables, the fault is handled by
the hypervisor. Our memory monitoring module is notified
of this fault via the callback placed in Xen’s shadow page ta-
ble mechanism, and updates its watchlist with the machine
physical page of the newly paged-in monitored object. For
brevity sakes, we omit system level details and provide only
the essential details. Before we proceed, we simply note that
Xen provides the VM with a virtualized view of the physi-
cal memory by performing the actual translation from guest
physical pages to actual machine physical pages. Further
details can be found in [1].

Tracking objects

The memory module uses its watchlist to track all subse-
quent accesses to monitored objects in memory. Recall that
the system call module consults the memory module to de-
termine if an access is to a protected object. To make this
determination, the memory module consults its watchlist,
and returns the result to the system call module.3

Notice that the memory monitoring module is in no way
restricted to tracking only events triggered via system calls.
Since it monitors objects in physical memory, any direct
accesses to the object will be tracked. For instance, accesses
to objects in the operating systems buffer cache will always
trigger a check of the memory module’s watchlist.
Our approach extends the coverage of events even to ac-

cesses that might occur on monitored objects that are copied
over to other memory locations. Since the memory monitor-
ing module is triggered from the initial page-in event of the
monitored data block from disk into memory, this paged-in
machine physical page is automatically added to the watch-
list. Hence, any subsequent events on this page such as a
memcpy() will result in the target memory location of the
copy operation to be also added to the watchlist4. This is
done to prevent evasion techniques that might copy the data
into a buffer and then send the data over a network socket.
Hence, any indirect data exfiltration attempts will also be
recorded as an access to the original monitored block.

This is a key difference between the type of taint track-
ing [6, 4] commonly used to track objects in memory and the
physical page monitoring we propose. Although taint track-
ing of that type affords for monitoring accesses to memory
locations at a very fine granularity (e.g. pointer tracking), it
does incur high overhead [36]. The memory tracking we im-
plemented tracks accesses to the initial physical page frame
where the data from monitored storage was paged in and
subsequent physical memory locations the data was copied
to. Our low overhead is achieved via a copy-on-write mech-
anism that tracks subsequent changes and accesses to the
monitored objects. This implementation affords a coarser
mechanism compared to taint tracking for memory moni-
toring, but achieves our goals at a much lower cost.

Once the decision is made that an access is to a monitored
object, the memory module notes this event by timestamp-
ing the access 5. The module also stores a “signature” of the
code pages of the offending process. Recall that the CR3 reg-
ister on the x86 platform points to the page directory of the
currently executing process within the VM. Hence, to keep
our overheads low, we do the signature creation lazily and
add the address of the CR3 register (page-table register) to
a queue of offending addresses that must be extracted later.

The signature is created as follows. For each item on this
queue, we examine its page frames to inspect those code-
pages that are unique to the process being inspected. Since
a CR3 could potentially point to different processes over time,
we log the accesses in a modified B+–tree [33] where the root
node is indexed by the tuple 〈CR3, set of codepages〉. In this
way, we avert appending a new process’ events to an old pro-
cess’ log. We call this structure a version-tree. The keys to
the version-tree are the block numbers corresponding to the
monitored object on disk, and the leaves are append-only en-
tries of recorded operations on location L. The version-tree
is built as follows:

1. If no version-tree exists for the process we are examin-
ing i.e. no tree has a root node that equals the current
CR3 and code page hash, then let the set of known
codepages be S = ∅, and skip to step (3).

2. Compare the hash of the codepages in the page table
to the stored value in the tree. If the hashes are the
same, there are no new codepages to record, and we
only need to update the accesses made by this process;
therefore, proceed to step (4).

3. To determine what new codepages have been loaded
into memory, compute the cryptographic hash of the
contents of the individual pages, ci. Next, for each
h(ci) 6∈ S, determine whether it is a kernel or user

page (e.g., based on the U/S bit), and label the page

54



Version Tree 

V[ID2]

tim
e

Timestamp
E1(read, disk)

Blocks

Timestamp
E3(write, mem:pipe)

( Ptr to V[ID3] )

Version Tree 

V[ID1]

Version Tree 

V[ID3]

time

Audit
Log

Causal
LinkageTimestamp

E2(write, mem:diff)

Timestamp
E3(write, disk:diff)

Timestamp
E1(read, disk)

Timestamp
E2(write, mem:diff)

Timestamp
E1(read, disk)

Timestamp
E2(write, mem:diff)

Timestamp
E3(write, net)

ID1 = 48C73 ID2 = 1E653 ID3 = BA12E 

Figure 4: The version tree stores different versions of blocks and the corresponding codepages that accessed these blocks over time. To
support efficient processing of the audit log, we also store pointers to other version-trees of causally related processes.

accordingly. If h(ci) is found in page tables of more
than one process, then label that page as shared.

4. Let S′ be the set containing the hashes of user pages.
Insert the access patterns (i.e., E0(O,L), . . . , E1(O,L))
into the version-tree with root node 〈CR3, S〉. That is,
store the access time, location L, and “diffs” of the
changed blocks for write operations, into the version-
tree for that process. Update the root node to be the
tuple 〈CR3, S ∪ S′〉.

These version-trees are periodically written to disk and
stored as an audit log where each record in the log is it-
self a version-tree (see Figure 4). Whenever the system call
module notes a casual relationship between entities access-
ing the same monitored objects—e.g., Ei(O,L) by entity p1
and Ej(O

′, L′) by p2—we add a pointer in the version tree
of p1 to p2. These pointers help with efficient processing of
the audit log. Having recorded the accesses to objects in L,
we now discuss how the logs can be mined to reconstruct
detailed information to aid in forensic discovery.

4. MINING THE AUDIT LOG
To enable efficient processing of the data during forensic

analysis, we support several built-in operations in our cur-
rent prototype. These operators form our base operations,
but can be combined to further explore the audit log. For the
analyses we show later, the operations below were sufficient
to recover detailed information after a system compromise.

• report(w,B): searches all the version trees and re-
turns a list of IDs and corresponding accesses to any
block b ∈ B during time window w.

• report(w, ID): returns all blocks accessed by ID dur-
ing time window w.

• report(w, access, B | ID): returns all operations of
type access on any block b ∈ B, or by ID, during time
window w.

• report(w, causal, B | ID): returns a sequence of
events that are causally related based on either access
to blocks b ∈ B, or by ID, during time window w.

4.1 Mapping blocks to files
Obviously, individual blocks by themselves do not provide

much value unless they are grouped together based on a se-
mantic view. The challenge of course is that since we mon-
itor changes at the block layer, file-system level objects are
not visible to us. Hence, we must recreate the relationships
between blocks in lieu of file-level information. Fortunately,
all hope is not lost as file-systems use various mechanisms
to describe data layout on disk. This layout includes how
files, directories and other system objects are mapped to
blocks on disk. In addition, these structures are kept at set
locations on disk and have a predefined binary format. As
our main deployment scenario is the enterprise model, like
Payne et al. [31] we assume that the file-system (e.g., ext3,
ntfs, etc.) in use by the guest VM is known.

Armed with that knowledge, the storage module periodi-
cally scans the disk to find the inodes and superblocks6 so
that this meta-data can be used during forensic recovery.
That is, for any set of blocks returned by a report() opera-
tor, we use the stored file-system metadata to map a cluster
of blocks to files. For ease of use, we also provide a facility
that allows an analyst to provide a list of hashes of files and
their corresponding filenames. The report() operators use
that information (if available) to compare the hashes in the
list to those of the recreated files, and tags them with the
appropriate filename.

5. EMPIRICAL EVALUATION
While having the ability to record fine-grained data ac-

cesses is a useful feature, any such system would be imprac-
tical if the approach induced high overhead. In what fol-
lows, we provide an analysis of our accuracy and overhead.
Our experiments were conducted on an Intel Core2 Dual
Core machine running at 2.53GHz with Intel-VT hardware
virtualization support enabled. The total memory installed
was 2GB. Xen 3.4 with HVM support and our modifications
served as the hypervisor, and the guest virtual machine was
either Windows XP (SP2) or Debian Linux (kernel 2.6.26).
The virtual machine was allocated 512 MB of memory and
had two disks mounted, a 20GB system disk and 80GB data
disk. The 80GB data disk hosted the user’s home directories,
and was mounted as a monitored virtual disk. Therefore, all
blocks in this virtual disk were automatically added to the
watchlist of the storage module. The virtual machine was
allocated 1 virtual CPU, and in all experiments the hyper-
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Figure 5: Runtime overhead for (a) varying block sizes and access patterns, and (b) across different test scenarios.

visor and the virtual machine were pinned to two different
physical cores. We do so in order to reflect accurate mea-
surements of CPU overheads.
First, the overhead associated with our approach was cal-

culated under a stress test using a Workload Generator and
a workload modeled for Enterprise users. Specifically, we
subjected our design to a series of tests (using IOMeter)7

to study resource utilization under heavy usage, and used
a scripting framework for Windows (called AutoIt) to auto-
mate concurrent use of a variety of applications. The appli-
cation set we chose was Microsoft Office, plus several tools
to create, delete, and modify files created by the Office ap-
plications. The parameters for the workload generator (e.g.,
the number of concurrent applications, average typing speed,
frequency of micro-operations including spell-check in Word
and cell calculations in Excel, etc.) were set based on em-
pirical studies [35, 17]. The Workload Generator tests were
conducted on an empty NTFS partition on the data disk,
while the Enterprise Workload was tested with pre-seeded
data comprising a set of Microsoft Office files along with ad-
ditional binaries. These binaries performed various memory
mapped, network and shared memory operations. The bina-
ries were added to increase the pool of applications loaded
during the tests, and hence add greater dynamism in the
resulting code pages loaded into memory.

Runtime Overhead. Our runtime overhead is shown in Fig-
ure 5(a). The block sizes were chosen to reflect normal
I/O request patterns, and for each block size, we performed
random read, random write, sequential read and sequential
write access patterns. The reported result is the average
and variance of 10 runs. Each run was performed under
a fresh boot of the guest VM to eliminate any disk cache
effects. The IOMeter experiments were run on the same
data disk with and without the monitoring code, and the
overhead was calculated as the percent change in CPU uti-
lization. The CPU utilization was monitored on both cores
using performance counters. The reported utilization is the
normalized sum of both cores.
Not surprisingly, writes have a lower overhead due to

the increased time for completion from the underlying disk.
Conversely, sequential access consumes more CPU as the
disk subsystem responds faster in this case, and hence the
I/O ring is quickly emptied by the hypervisor. Even under
this stress test, the overhead is approximately 18%. This
moderate overhead can be attributed to several factors in
our design, including the scheduling of lazy writes of our
data structures, the lightweight nature of our system-call
monitoring, and the efficiency of the algorithms we use to
extract the code pages.

Figure 5(b) shows a more detailed breakdown of CPU
overhead as consumed by the different modules. Notice that
the majority of the overhead for the stress test (for the 16KB
case) can be attributed to the storage subsystem, as many
of the accesses induced in this workload are for blocks that
are only accessed once. We remind the reader that the ex-
pected use case for our platform is under the Enterprise-

Workload model and the overall overhead in this case is be-
low 10%, with no single module incurring overhead above
3%. Also shown are the averaged overheads induced when
monitoring and logging the activities of several real-world
malware. In all cases, the overload is below 10%, which is
arguably efficient-enough for real-world deployment. We re-
turn to a more detailed discussion of how we reconstructed
the behavioral profiles of these malware using our forensic
platform in Section 6.

Another important dimension to consider is the growth
of the log compared to the amount of actual data written
by the guest VM. Recall that the audit log stores an initial
copy of a block at the first time of access, and thenceforth
only stores the changes to that block. Furthermore, at every
snapshot, merging is performed and the data is stored on
disk in an optimized binary format.

We examined the log file growth by monitoring the au-
dit log size at every purge of the version-trees to disk (10
mins in our current implementation). In the case of the
Enterprise Workload , the experiment lasted for 1 hour,
with a minimum of 4 applications running at any point in
time. During the experiment, control scripts cause the over-
all volume of files to increase at a rate of at least 10%. The
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Malware % Activity in Log Disk search Exfiltration Classification

Zeus & Variants 35.0 active active info stealer
Ldpinch 22.5 active active info stealer
Alureon 15.0 active active info stealer
Koobface 10.0 passive active installer
Bubnix 5.0 passive active installer
Sinowal 4.0 active active both
Conpro 3.5 active active installer
Vundo 3.0 passive passive installer
Rustock 1.5 passive passive installer
Slenfbot 0.5 passive passive installer

Table 1: Malicious applications recovered from the audit log, and their high-level classification.

file sizes of the new files were chosen from a zipf distribu-
tion, allowing for a mix of small and large files [25]. We also
included operations such as make to emulate creation and
deletion of files. The overhead (i.e. additional disk space
used to store logs and metadata compared to the monitored
disk blocks) was on average ≈ 2%. Since the Enterprise-

Workload is meant to reflect day-to-day usage patter this
low overhead indicated that this platform is practical and
deployable.

Accuracy of Reconstruction. To examine the accuracy of
our logging infrastructure, we explore our ability to detect
accesses to the monitored data store by “unauthorized” ap-
plications. Again, the Enterprise Workload was used for
these experiments, but with a varying concurrency parame-
ter. Specifically, each run now included a set of authorized
applications and a varying percentage of other applications
that also performed I/O operations on monitored blocks.
The ratio of unauthorized applications for a given run was
increased in steps of 5%, until all applications running were
unauthorized. The task at hand was to reconstruct all illicit
accesses to the disk. The illicit accesses include copying a
file into memory, sending a file over a network connection,
and shared memory or IPC operations on monitored objects.
The audit log was then queried for the time-window span-
ning the entire duration of the experiment to identify both
the unauthorized applications and the illicit access to blocks.
The system achieved a true positive rate of 95% for identifi-
cation of the illicit applications and a 96% true positive rate
in identifying the blocks accessed by these applications.

6. REAL-WORLD CASE STUDY
To further showcase the benefits of our platform, we re-

port on our experience with deploying our framework in an
open-access environment that arguably reflects the common
case of corporate laptops being used in public WiFi environ-
ments. Specifically, we deployed our approach on a laptop
supporting hardware virtualization, on top of which we ran
a Windows XP guest with unfettered access to the network.
The enterprise workload was configured to run on the guest
system to simulate a corporate user. The monitored area
was set to be the entire virtual disk exposed in the guest
(roughly 4.0 GBs of storage). While there was no host or
network-level intrusion prevention system in place on the
guest system, we also deployed Snort and captured network
traffic on a separate machine. This allowed us to later con-
firm findings derived from our audit mechanism. The laptop
was left connected to the network for one week, and its out-

bound traffic was rate-limited in an attempt to limit the use
of the machine to infect other network citizens.

To automate the forensic recovery process, we make use
of a proof-of-concept tool that mines the audit logs looking
for suspicious activity. Similar to Patagonix [27] we assume
the existence of a trusted external database, D, (e.g., [30])
that contains cryptographic hashes of applications the sys-
tem administrator trusts. The code pages for these autho-
rized applications were created using a userland application
that runs inside a pristine VM and executes an automated
script to launch applications. The userland application com-
municates with the memory monitoring module, and tags
the pages collected for the current application. The pages
are extracted as described in Section 3.1.3, and are stored
along with the application tags. Notice that these mappings
only need be created once by the system administrator.

We then mined the log for each day using report(24hr,
B) to build a set of identifiers (p ∈ P ), where B ={blocks
for the temp, system, system32 directories and the mas-
ter boot record}. Next, we extracted all causally related
activity for each p 6∈ D, by issuing report(24hr, causal,
p). The result is the stored blocks that relate to this activ-
ity. These blocks are automatically reassembled by mapping
blocks to files using the filesystem metadata saved by the
storage module (as discussed in Section 4.1). At this point
we have a set of unsanctioned applications and what blocks
they touched on disk. For each returned event sequence, we
then classified it as either (i) an info stealer: that is, a pro-
cess that copied monitored objects onto an external location
(e.g., L=network) or (ii) an installer: a process that installs
blocks belonging to an info stealer.

To do so, our recovery utility first iterates through the set
of unsanctioned applications and checks the corresponding
version-trees for events that match an info stealer’s signa-
ture. For each match, we extract all its blocks, and issue
report(24hr, bi, . . . , bn). This yields the list of all unsanc-
tioned applications that touched an info stealer’s blocks.
From this list, we searched for the one that initially wrote the
blocks onto disk by issuing report(24hr, write, bi, . . . , bn).
The result is an installer.

Table 1 shows the result of running our proof-of-concept
forensic tool on the audit logs collected from the laptop.
The table shows the percentage of activity for each malicious
binary and the classification as per the tool. For independent
analysis, we uploaded the reconstructed files to Microsoft’s
Malware Center; indeed all the samples were returned as
positive confirmation as malware. We also subjected the
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entire disk to a suite of AV software, and no binaries were
flagged beyond those that we already detected by our tool.
To get a better sense of what a recovered binary did, we

classify its behavior as active if it had activity in the audit
logs every day after it was first installed; or passive other-
wise. The label “Exfiltration” means that data was shipped
off the disk. “Disk search”means that the malware scanned
for files on the monitored store. As the table shows, ap-
proximately 70% of the recorded activity can be attributed
to the info stealers. Upon closer examination of the blocks
that were accessed by these binaries, we were able to classify
the files as Internet Explorer password caches and Microsoft
Protected Storage files. An interesting case worth pointing
out here is Zeus. The causal event linkage by the forensic
tool allowed us to track the initialization of Zeus as Zbot

by Sinowal. Even though Sinowal constitutes only 4% of
activity in the logs, it was responsible for downloading 60%
of the malware on the system. Zeus appears to be a variant
that used Amazon’s EC-2 machines as control centers8.
Interestingly, the average growth of our audit log was only

15 MB per day compared to over 200 MB per day from the
combined Snort and network data recorded during the ex-
periment. Yet, as we show later, the data we are able to
capture is detailed enough to allow one to perform interest-
ing behavioral analyses. The analysis in Table 1 took less
than 4 hours in total to generate the report, and our proof-
of-concept prototype can be significantly optimized.

6.1 Example Reconstruction
With the framework at our disposal, we decided to explore

its flexibility in helping with behavioral analysis. Specifi-
cally, we were interested in analyzing Mebroot, which is a
part of the stealthy Sinowal family. Mebroot serves as a
good example as reports by F-Secure [8] labels it as one of
the “stealthiest” malware they have encountered because it
eschews traditional windows system call hooking, thereby
making its execution very hard to detect. The anatomy of
the Mebroot attack can be summarized as follows: first, a
binary is downloaded and executed. Next, the payload (i.e.,
from the binary) is installed, and the master boot record
(MBR) is modified. Lastly, the installer deletes itself.
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Figure 6: Annotated graph of the causal reconstruction of Meb-
root’s attack vector as recovered from processing the audit logs

To understand what Mebroot did, we issued report(∞,
causal, ID(Mebroot)). The reason why the causal relation-
ship between the first two steps is built by our monitoring

infrastructure should be obvious. In our platform, the con-
nection between the first and last steps is made when the
file deletion is noted (i.e., when the storage module rescans
the inodes). An annotated profile of the behavior recovered
from our audit log is shown in Figure 6. Notice that because
we store “diffs” in the version trees, we are also able to see
all the modifications made to the MBR.

To further evaluate the strength of our platform in help-
ing an analyst quickly reconstruct what happened after a
compromise is detected, we provided two malware samples
to a seasoned malware analyst (i.e., the second author) for
inspection. In both cases, the malware was successfully un-
packed and disassembled using commercial software and in-
spected using dynamic analysis techniques for system-call
sequence analysis, for finding the payload in memory, and
for single-stepping its execution. We then compared our re-
sults to those from this labor-intensive exercise.

Syscall Phalanx2 Mebroot

% Manual Forensic Manual Forensic
Storage 0.72 0.68 0.91 0.95
Memory 0.26 0.30 0.08 0.05
Other 0.02 0.02 0.01 0.0

Table 2: Comparison of the profiles created by manual analysis
vs. reconstruction using our platform

The breakdown in terms of diagnosed functionality is shown
in Table 2. The overall results were strikingly similar, though
the analyst was able to discover several hooks coded in Pha-
lanx2 (a sophisticated info stealer) for hiding itself, the pres-
ence of a backdoor, and different modes for injection that are
not observable by our platform. From a functional point of
view, the results for Mebroot were equivalent. More impor-
tant, however, is the fact that the manual inspection verified
the behavioral profile that we reported, attesting to the ac-
curacy of the linkages we inferred automatically.

7. ATTACKS AND LIMITATIONS
As stated earlier, the approach we take relies on the se-

curity properties of the hypervisor to properly isolate our
monitoring code from tampering by malicious entities resid-
ing in the guest OS’s. This assumption is not unique to our
solution, and to date, there has been no concrete demonstra-
tion that suggests otherwise. However, if the security of the
hypervisor is undermined, so too is the integrity and correct-
ness of the transactions we record. Likewise, our approach
suffers from the same limitations that all other approaches
that have extended Xen (e.g., [31, 7, 22, 18]) suffer from—
namely, that it extends the trusted code base.

A known weakness of current hypervisor designs is their
vulnerability to hypervisor-detection attacks [11, 5, 13]. One
way to address these attacks might be to rely on a thin
hypervisor layer built specifically for data forensics, instead
of using a hypervisor like Xen which provides such a rich
set of functionality (which inevitably lends itself to being
easily detected). Once the presence of a hypervisor has been
detected, the attacker can, for instance, change the guest
VM’s state in a way that would cause the forensic platform
to capture a morphed view of the VM [13]. An example
of such an attack would involve the attacker attempting to
circumvent our event model by modifying the System Call
Tables in Linux or the SSDT in Windows to remap system
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calls. This could cause the framework to trigger false events
at the system call layer and pollute the audit logs. That
said, such an attack poses a challenge for all the hypervisor-
based monitoring platforms we are aware of. Techniques to
mitigate such attacks remain an open problem.
Resource exhaustion attacks offer another avenue for hin-

dering our ability to track causal chains. As our infrastruc-
ture tracks all monitored objects in memory, an attacker
could attempt to access hundreds of files within a short pe-
riod of time, causing the memory monitoring module to al-
locate space for each object in its watchlist. If done using
multiple processes, the attack would likely lead to mem-
ory exhaustion, in which case some monitored objects would
need to be evicted from the watchlist. While we have built
several optimizations to mitigate such threats (e.g., by col-
lapsing contiguous pages to be tracked as a single address
range), this attack strategy remains viable.
Lastly, since we do not monitor interactions that directly

manipulate the receive and transmit rings of virtual network
interfaces (NICs), such accesses will not be logged. More-
over, our current prototype only logs accesses to monitored
blocks, and does not prevent such accesses. That said, ex-
tending our approach to cover these rings and/or to block
unauthorized accesses is largely an engineering exercise that
we leave as future work.

8. CONCLUSION
We present an architecture for efficiently and transpar-

ently recording the accesses to monitored objects. Our tech-
niques take advantage of characteristics of platforms sup-
porting hardware virtualization, and show how lightweight
mechanisms can be built to monitor the causal data flow of
objects in a virtual machine—using only the abstractions ex-
posed by the hypervisor. The heuristics we developed allow
the monitoring framework to coalesce the events collected
at various layers of abstraction, and to map these events
back to the offending processes. The mappings we infer are
recorded in an audit trail, and we provide several mech-
anisms that help with data forensics efforts; for example,
allowing an analyst to quickly reconstruct detailed informa-
tion about what happened when such information is needed
the most (e.g., after a system compromise). To demonstrate
the practical utility of our framework, we show how our ap-
proach can be used to glean insightful information on be-
havioral profiles of malware activity after a security breach
has been detected.

9. CODE AVAILABILITY
The source code for both the monitoring platform (i.e.,

patches to Xen) and our packaged tools are available on re-
quest under a BSD license for research and non-commercial
purposes. Please contact the first author for more informa-
tion on obtaining the software.
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Notes
1The SYSENTER call on the Intel platform uses the MSR

SYSENTER_EIP to find the target instruction. This MSR is
always located on Intel machines at address 176h.

2System call numbers are pushed into eax
3Recall the memory module must translate the guest vir-

tual address to its physical address in a machine physical
page

4The destination machine physical page in memcpy
5Specifically, a hidden page is appended in the shadow

page table of the process with the timestamp and objects
accessed

6Similarly, the Master File Table and Master File Records
under NTFS.

7See http://www.iometer.org
8We verified this hypothesis independently based on our

network logs.
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