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Abstract—Internet measurement studies often require pro-
longed probing of remote targets to collect information, yet
almost all such studies of which we are aware were undertaken
without considering the polluting effects of their unconstrained
probing behavior. To help researchers conduct experiments in a
more responsible fashion, we present a framework and technique
that enables efficient execution of large-scale periodic probing
without exceeding pre-set limits on probing rates. Our technique
employs a novel scheduling algorithm and leverages knowledge
of diurnal traffic patterns to make data collection more efficient
(e.g., by probing servers only during periods in which probe
results will be most useful). We evaluate our technique in the
context of a real-world study and show that it substantially
outperforms naı̈ve probing strategies for accomplishing the same
goal, sending more probes during useful periods, fewer probes
overall, and probing at more precise intervals as required by our
measurement applications.
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I. INTRODUCTION

Over the past several decades, researchers and practitioners
have proposed countless techniques for understanding various
characteristics about the Internet at large. For the most part,
these pursuits have been grounded in empirical measurements
that are either passive or active in nature. As their names
imply, passive measurements typically involve observations
taken from some form of capture device, while active mea-
surements require the injection of specially crafted packets
(so-called probes) into the network to infer characteristics of
the phenomenon under scrutiny.

Recently, there has been a marked increase in the use of
active measurements for understanding Internet topology and
mapping (e.g., geo-location), path-variance and other end-to-
end performance dynamics (e.g., bandwidth estimation), the
spread of security-related events (e.g., worm outbreaks), and
client and server demographics (e.g., website popularity), etc.
To better enable such studies and improve data collection
efforts, a number of scalable measurement infrastructures
(e.g., CAIDA’s Archipelago Measurement [10], Google’s M-
lab open platforms, and the Flexible Lightweight Active Mea-
surement Environment [25]) have been made available to the
research community for controlled experiments. Archipelago,
for example, provides a centrally managed framework that
supports a distributed shared-memory architecture that can be
used to coordinate network measurements across the globe.

A common requirement in many of the Internet-wide studies
being conducted today is the need to repeatedly probe some
set of targets over time. Collectively, we rely on each ex-
perimenter’s own restraint to limit the volume of traffic they
inject into the network and/or target at a given resource. While
some experimenters exercise such restraint to limit collateral
damage, in the absence of accepted guidelines for such mea-
surements and tools to enable experiments that respect them,
the injection of billions of probes into the network during a
short period of time is not uncommon (e.g., [3]); indeed, the
literature is rife with examples of arguably egregious practices.

Such disregard for the collateral damage caused by network
measurement experiments has raised enough concern that it
has led to a call urging the community to move towards a set
of best practices for active measurements. As Papadopoulos
and Heidemann note [17], as practitioners it should be our job
to design experiments carefully, in a manner that significantly
lowers load without sacrificing measurement fidelity. In this
paper, we present a technique for attempting to do just that.
Specifically, we propose an efficient scheduling algorithm for
probing measurement targets, which is efficient in that it can
be tuned towards expeditious completion of the experiment
while also observing some predefined maximum probing rate.

Of specific interest to us are studies of Internet demo-
graphics (e.g., inferring website popularity rankings [19], [24],
exploring the prevalence of malicious domain name system
(DNS) servers [6], and client-density estimation [7], [20])
where the fidelity of the experiment can increase if the targets
are probed at ideal times. We aim to maximize the utility
of each probe that we send, in contexts where the utility
of a probe can be correlated with time-of-day, e.g., when
it is expedient to probe targets during their peak (or off-
peak) traffic periods. Our approach may also be extended
for applications requiring that certain subsets of targets be
probed contemporaneously, such as RadarGun [2] for IP alias
resolution. We show that for experiments taking several days,
and given limited probing resources, our scheduling algorithm
outperforms several naı̈ve strategies for probe scheduling
according to intuitive metrics provided in §IV.

The remainder of this paper is organized as follows. Related
work is presented in §II. In §III we outline our scheduling
framework and algorithm, which we evaluate in §IV. We
conclude in §V.



II. RELATED WORK

As mentioned earlier, some experimenters have exercised
restraint to limit collateral damage from the probes they inject.
Bender et al. [2], for example, attempt to constrain their
probing rates to avoid triggering rate limiters. Others [21],
[11] have tried to take advantage of opportunistic measurement
techniques in order to unobtrusively make network mea-
surements without triggering alarms from intrusion detection
systems. Unfortunately, these instances of restraint seem rare,
and the academic literature contains numerous examples of
experimenters probing at high rates (e.g., 260 packets per
second [22]) or injecting high volumes of probes (e.g., 220
million [6] and 27 billion probes [3]),1 which are arguably
indistinguishable from attacks.

Previous work on scheduling active network monitoring ac-
tivities has focused on preventing the simultaneous scheduling
of activities that would interfere with each other’s results and
lead to inaccurate measurement reports [4], [8], [18]. Here we
are not concerned with probes interfering with one another,
but we focus rather on respecting a limit on the probe rate
we induce on the network, while completing the probing
experiment as quickly as possible. That is, because our targets
are all distinct, by imposing limits on our probing rate we are
able to mitigate (to some extent) packet loss due to network
congestion. To complete the experiment quickly, we leverage
knowledge of the useful interval in which each type of probe
should occur, which is characteristic of the type of probing
activities considered here but that is not utilized in these prior
works. Moreover, we do not assume that information about
the underlying network topology is readily available.

Additionally, prior work in this area provides no guidance
on how to prioritize probes for scheduling in the absence of
network topology, and so is not helpful in our setting. The
work of Calyam et al. [4] applies the basic earliest-deadline-
first (EDF) heuristic [15] that we use, but their scheduling
is done in an offline setting; they do not utilize efficient
data structures to leverage the scalability of the simple online
heuristic. Additionally, Calyam et al. do not allow for the
possibility of dropped probes, and so their algorithm simply
fails if all of their probes cannot be issued on time.

Also related to our work (i.e., arranging as many targeted
probe sequences as possible to fit within some maximum rate
limit) is the literature on perfectly periodic or cyclic scheduling
on parallel processors. The fundamental scheduling problems
are still NP-hard [16], but efficient approximations [1] could be
used for applications not requiring precisely periodic probes.

III. APPROACH AND ASSUMPTIONS

Our work is motivated by the need to find more efficient
ways to schedule network probes. Specifically, we consider
the common case wherein the prober needs to issue a series
of probes to a given target, j, at some periodic interval,
πj . In some cases, each target might have its own probing
period (e.g., the time-to-live- (TTL-) based intervals assumed
in various types of DNS cache snooping investigations [19],
[24]), or the period might be uniform across all measurement

points (as is the case with several ID-based alias resolution
studies for creating router-level topology graphs [2], [13],
[22]).
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Fig. 1: Hypothetical curves illustrating the volume of DNS
requests (for different websites) observed by a DNS resolver.
In the cache inspection example, the goal is to probe the
resolver about a given website w, but only during peak periods
of activity for w.

We also assume that for some of the experiments, there is a
notion of an idealized measurement window (i.e., a contiguous
window of time) that we call a target’s “useful interval”,
denoted [sj , ej). The intuition here is that the fidelity of the
experiment may be improved by probing targets during some
region of time when we can expect the most utility out of our
probes (see Figure 1). In the case of DNS cache inspection, for
example, it makes little sense to probe a caching resolver [23]
to infer density-based estimates of client populations using the
server when most of its clients may be asleep or idle [7]. (We
do not adapt these windows dynamically, although doing so
would be useful for applications such as bandwidth estima-
tion.) Lastly, we assume that the experiment dictates that a
certain number of probes be sent to each target.

For the remainder of the paper, we assume that network
traffic follows diurnal patterns—i.e., it is largely similar from
day to day, but not from hour to hour, and it exhibits no major
differences from week to week. Accordingly, we schedule
probes to our targets in real time, using these diurnal traffic
patterns. Our solution makes use of a simple and efficient
priority queue, described in §III-C.

A. Constraints

Our scheduling algorithm must meet the following con-
straints:

1) periodic probes must be evenly spaced at intervals of
(πj + δ), for some relatively small δ compared to the
periodicity πj ;

2) a predetermined number of probes Nj must be issued to
each target by the end of the probing experiment; and

3) no more than L probes per second may be sent.
In what follows, we meet the first two constraints heuristi-

cally, but observe the probing rate limit constraint strictly.

B. Goals

Ideally, we would like to probe each unfinished target (a
target j to which we have sent fewer than Nj probes) every
day at times {sj , sj+πj , sj+2πj , . . . ,∼ ej} within the target’s
useful interval [sj , ej) until we have sent Nj probes to each
target or the time for the experiment is exhausted. This would
allow us to achieve perfect periodicity of πj between our
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Fig. 2: An individual probe to a target j is initially placed into
availabilityList[sj] according to the beginning of its
useful interval [sj , ej). If the probe is issued, the succeeding
probe to target j is placed into availabilityList[sj +
TTLj].

probes, and we would conserve probes by only issuing them
within [sj , ej). Unfortunately, with a large number of targets,
there is no guarantee that we can do this without exceeding
our rate limit of L probes/sec at some point in time. Since we
must observe our probing rate limit (3) strictly, the other two
constraints are met only heuristically.

Not every unfinished target will be probed on every day, but
if a target j is probed on a given day, we require that it be hit
with a sequence of (at most d ej−sjπj

e) probes within the time
interval [sj , ej), such that in every fixed (non-sliding) window
of duration πj beginning at time sj , there will be exactly one
probe to the target j, until ej is reached or a probe is dropped
(described below). By the end of the experiment, up to Nj
probes will have been issued to each target j, but no more.

C. Earliest-Deadline-First (EDF) Scheduling

We characterize a single probe by the tuple (j, rj , dj), where
j is the target to be probed, and [rj , dj) is the fixed window
of duration πj within which the probe should be issued. Thus,
the first probe in a sequence is (j, sj , sj + πj), the second
(j, sj+πj , sj+2πj), and so on. Recall that we do not enforce
the periodicity πj strictly; in principle, two probes may be as
close together as 1 timestep or as far apart as 2πj−1 timesteps.

We initialize our algorithm by populating an array called
availabilityList of length T = 86400 (seconds
in a day) with the first probes for each target, assign-
ing a probe (j, rj = sj , dj = sj + πj) to position
availabilityList[sj], the time at which the probe will
become available for issuing. Starting at time t = 0, we
push the probes from availabilityList[t mod T] onto
a priority queue Q ordered by increasing dj—“earliest deadline
first”. In our notation, the time t is definite and monotonically
increasing; the interval edges {sj , ej , rj , dj} are all within
[0, T ) and represent times between 00:00:00 and 23:59:59.

At each timestep t, we pop and send as many probes as
possible from Q without exceeding our rate limit L. For each
probe (j, rj , dj) that we send, we place its successor probe
(j, dj ,max(dj + πj , ej)) into availabilityList[dj] if

the target j remains to be probed. We thus aim to issue the
successor probe in the πj-length window immediately follow-
ing [rj , dj). If the first probe (j, rj , dj) is issued near the end
of the window [rj , dj), this means a lot of probing resources
are being consumed around time t, and the succeeding probe
is likely to be issued near the end of the window [dj , dj+πj),
so that the probing periodicity πj is attained heuristically.

The probes left in Q are carried over onto timestep (t+1),
and then combined with the probes pushed onto Q from
availabilityList[t + 1]. If a probe to j is dropped,
i.e., it is popped off of Q at a time t ≥ dj , this means
that the rate limit has been reached for the last πj timesteps,
and remaining probes to j are postponed until t re-enters the
useful interval [sj , ej) the following time, in order to ease the
workload and reduce probe delay. More precisely, if a probe
(j, rj , dj) is dropped, the probe (j, sj , sj + πj) is placed into
availabilityList[sj] and reconsidered at time t ≡ sj
(mod T ).

Thus, probes may be dropped from the ends of sequences,
but never from the middle; we succeed in guaranteeing that
there will be exactly one probe sent to j in every fixed window
of length πj from sj until the end of the probing sequence. We
also strictly observe our probing rate limit L (constraint (3) in
§III-C). Our heuristic success in evenly spacing our probes at
(πj + δ) intervals (constraint (1)) and sending Nj probes to
each target (constraint (2)) is illustrated in §IV.

D. Complexity

The use of a priority queue with amortized constant-time
pushes and log-time pops (in the length of the queue) makes
our approach scalable: for an experiment of duration D days,
our worst-case time complexity is O(J ·N ·D · log J), where
J is the number of targets to probe and N

.
= maxj Nj is

the maximum number of probes to send to a target. When
scheduling online at each timestep, the time complexity is
O(J log J). The space requirement of our algorithm is O(J).

IV. EVALUATION

We evaluate our approach via a simulation of a week-long
measurement experiment that aptly demonstrates a type of
Internet-wide study which uses DNS cache inspection [9] to
infer demographic information. For example, both Wills et
al. [24] and Rajab et al. [19] used cache inspection techniques
to infer the relative popularity of a set W of websites of
interest. The basic idea is that the caches of a number of DNS
resolvers across the globe are probed at regular intervals, and
the responses are used to compute the request rate for each
website w ∈ W . Intuitively, DNS entries of websites with
higher hit rates will be refreshed more quickly than those
with lower hit rates, and so the targets in W can be ranked
accordingly. The probe periodicity is determined to match the
authoritative TTL of the targeted website w. It is also assumed
that the ideal probing interval (the “useful interval”) for a pair
(v, w) is the period when the frequency of requests for the
website w from clients using resolver v is highest.



In the analysis that follows, we simulate probing 100,000
targets, each with their own useful interval and probing pe-
riodicity. Our probing periodicities, then, are target-specific
as opposed to timezone-specific (π(v,w) = TTLw), as are our
useful intervals ([s(v,w), e(v,w))). We set the number of probes
required per target to be Nj = 50 (for all targets j). The
probing limit is set conservatively at L = 100 probes/second.

Lastly, client DNS traffic patterns were modeled [12] using
a 21-day trace of outgoing http requests from a university
campus network [5]. For each target, we calculated the mean
µ and standard deviation σ of the target’s DNS traffic pattern
(Figure 1). We evaluated useful interval settings of [µ−σ, µ+
σ) (the mean window length being 9h30m, containing 70%
of traffic) and [µ− 2σ, µ+2σ) (mean windows of 19h, 95%
of traffic).2

A. Comparative Schemes

To evaluate the effectiveness of our approach, we compare it
with six alternative strategies for accomplishing the same goal
of issuing 50 probes to each target during the target’s useful
interval. The strategies follow the same restrictions as we do
(i.e., maximum probing rate, number of targets, periodicity,
etc.), but are naı̈ve in that they do not take useful intervals
or other diurnal traffic patterns into account when scheduling
their probes.

• SHORTESTPERIODSFIRST: prioritize targets with the
shortest periodicities. This approach might be useful
in the contexts of several measurement studies in the
literature [6], [22], to collect as much measurement data
as possible early in the experiment.

• LONGESTPERIODSFIRST: prioritize targets with the
longest periodicities in order to complete the experiment
in as few days as possible. Note that with variable probing
periodicities, the overall length required to complete the
experiment will be determined by the “long tail” caused
by late probing of a few targets with long periodicities.
Just like the above approach, shortening this long tail
would also be desirable in many studies [6], [22].

• SLIDINGWINDOW: begin probing a random subset of
targets on day 1, adding another subset on day 2, and
so on until all targets have been added. This strategy is
inspired by the approach of Keys et al. [13] to allow
certain subsets of targets to overlap in probing.

• ROUNDROBIN: prioritize targets that have been probed
least, so that each day the minimum fraction of probes
sent across all targets is as high as possible.

• RANDOM: prioritize targets according to a predetermined
random order.

• NOPRIORITY: use a simple first-in-first-out (FIFO) queue
instead of a priority queue. Newly available probes and
probes following those issued are placed at the end of the
queue, without prioritization.

B. Analysis

Our results suggest that, if a probing rate limit must be
observed, our approach will yield more accurate and efficient
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Fig. 3: CDF of the standard deviation of inter-probe delay.
Many of the naı̈ve strategies probe their targets at intervals
that deviate significantly in length, which would lead to poor
measurement results for several applications.

data collection than naı̈ve probing techniques.
In this simulated probing experiment, probes are issued at

intervals of TTLj+δ, for some small δ. Empirically, the mean
of the δ values is always near 0, but we present in Figure 3 a
CDF of the deviation in the δ values for each of the 100,000
targets. Figure 3 thus illustrates that our approach issues probes
at more regular intervals than the naı̈ve strategies, which will
lead to more accurate data collection.

Our strategy also allows us to probe more targets—and
issue more probes to those targets we do hit—than the naı̈ve
strategies. Figure 4 is a CDF of the total number of probes
issued during useful intervals (“useful probes”) for each of
the targets, as of the end of the experiment. It shows that we
are able to completely finish probing 92–97% (all but 8,228–
3,070) of our targets by the end of the week, compared to
about 50–70% of targets completed by the naı̈ve strategies.
Moreover, we manage to send at least 14 of 50 useful probes
to all targets, while the naı̈ve strategies send only 3–5 useful
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Fig. 4: CDF of the number of useful probes sent per strategy.
Depending on the useful interval length ((a) vs. (b)), we finish
probing 92–97% of our targets, compared to 50–70% of targets
finished by the other strategies.

probes to all of the targets by the end of the week. As Figure 4b
shows, lengthening the useful intervals does not significantly
affect these results.

Notice as well that we are able to send more probes during
useful intervals while sending fewer probes overall. Figure 5a
illustrates our conservative probing behavior. Over the course
of the week, we send a total of 4.9m probes, all during useful
intervals—compared to the over 9.6–10m probes sent by naı̈ve
strategies, only 40% of which can be considered useful.

Two further observations may be made from Figure 3:
first, with respect to the periodicity standard deviation being
measured, our approach improves when the useful intervals
are lengthened, while the naı̈ve strategies perform worse.
Second, the naı̈ve strategies of SHORTESTPERIODSFIRST and
SLIDINGWINDOW perform relatively well based on their inter-
probe delay. For SHORTESTPERIODSFIRST, this performance
is likely due to the ease with which the short periodicity jobs
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Fig. 5: Total vs useful number of probes sent over time. Total
probes are indicated by unmarked lines; useful probes by criss-
crossed lines. Notice that we send 4.9m probes, compared to
the 7–10m probes issued by other strategies.

interleave with one another, as well as how easily they can
be deferred if the rate limit is reached. However, notice that
in Figure 5, the SHORTESTPERIODSFIRST strategy also issues
the most probes overall. The SLIDINGWINDOW strategy limits
inter-probe delay by spreading the workload evenly over the
course of the experiment. That said, by naı̈vely staggering the
targets, SLIDINGWINDOW fails to send as many useful probes
to each target as the other strategies do (Figure 4).

Our advantage over the other strategies stems largely from
the fact that we probe only during the useful intervals and that
the intervals themselves are often not closely aligned with one
another. For example, targets in various timezones will likely
have useful intervals staggered throughout the day, providing
a small subset of targets to probe during each hour of the
day. Additionally, while we do not assume that probes in
some part of a useful interval might be more useful than in
other parts of the same interval (i.e., similar to the notion of



“weighted tardiness scheduling” [14]), it should be clear that
our approach could be augmented to work more effectively
in such contexts since, by design, we have the flexibility
to constrain the useful intervals as much as is necessary,
and we can assign different scheduling priorities to probes
depending upon where they fall within the intervals. Finally,
our application of the EDF scheduling heuristic improves the
precision of our periodic probing more than naı̈ve prioritizing
or a FIFO queue could do.

We believe the results show that our scheduling approach
can be used to conduct active measurements on the Internet in
a more responsible fashion. In particular, we argue that it offers
a good solution for experimenters interested in distributing
their workloads over time and across limited resources while
keeping probing restrictions in mind — yet still maintaining
their over-arching goal of finishing their experiments expedi-
tiously.

V. CONCLUSION AND FUTURE WORK

In this work we have introduced a technique for scheduling
periodic network probes for Internet measurement, towards
providing a means for researchers to collect measurement data
while probing responsibly. By leveraging diurnal traffic data
for our targets, we demonstrated that our technique could be
used to collect more useful data (while sending fewer probes
overall) than naı̈ve strategies in the context of a simulated
7-day large-scale measurement experiment that observed a
probing rate limit at all times.

As part of future work, we are exploring specific enhance-
ments to our framework to accommodate subsets of targets
whose probe sequences need to overlap. In doing so, we would
extend our approach to be of significant practical benefit to
some IP alias resolution applications [2] whose efficient linear
probing complexity depends on probe sequences to targets
that overlap in time. We are also interested in performing
a large-scale empirical evaluation of the real-world benefits
of using our scheduling strategy to coordinate probes from
different measurement platforms (e.g., Archipelago [10] and
FLAME [25]).
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NOTES
1Our intention is not to call attention to these particular studies, as they

are by no means exceptions to the norm; they do, however, illustrate the sheer
volume of probes sent in many active Internet measurements today.

2Note that due to limited data we estimated one useful interval for each
website w, not one interval for each DNS server-website pair (v, w).
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