
Understanding LLMs Ability to Aid Malware Analysts in
Bypassing Evasion Techniques

Miuyin Yong Wong
Georgia Institute of Technology

Atlanta, Georgia, USA

Kevin Valakuzhy
Georgia Institute of Technology

Atlanta, Georgia, USA

Mustaque Ahamad
Georgia Institute of Technology

Atlanta, Georgia, USA

Doug Blough
Georgia Institute of Technology

Atlanta, Georgia, USA

Fabian Monrose
Georgia Institute of Technology

Atlanta, Georgia, USA

Abstract
Over the past few years, the threat of malware has become increas-
ingly evident, posing a signifcant risk to cybersecurity worldwide
and driving extensive research eforts to prevent and mitigate these
attacks. Despite numerous eforts to automate malware analysis,
these systems are constantly thwarted by evasive techniques devel-
oped by malware authors. As a result, the analysis of sophisticated
evasive malware falls into the hands of human malware analysts,
who must undertake the time-consuming process of overcoming
each evasive technique to uncover malware’s malicious behaviors.
This highlights the need for approaches that aid malware analysts
in this process. Although active measures, such as forced execution
and symbolic analysis, can automatically circumvent some evasive
checks, they sufer from limitations like path explosion and fail
to provide useful insights that analysts can use in their workfow.
To fll this gap, we investigate how large language models (LLMs)
can address shortcomings of symbolic analysis through the frst
comparative analysis between the two in bypassing evasion tech-
niques. Our study leads to three key fndings: (i) we fnd that LLMs
outperform symbolic analysis in bypassing evasive code, especially
in the presence of common code patterns, such as loops, which
have historically posed a challenge for symbolic analysis, (ii) we
show that LLMs correctly identify methods of bypassing evasive
techniques in real-world malware, and (iii) we highlight how even
in LLMs failure modes, human malware analysts can beneft from
the step-by-step reasoning provided by the model.

Keywords
Malware Analysis; Large Language Model; Symbolic Analysis

ACM Reference Format:
Miuyin Yong Wong, Kevin Valakuzhy, Mustaque Ahamad, Doug Blough,
and Fabian Monrose. 2024. Understanding LLMs Ability to Aid Malware
Analysts in Bypassing Evasion Techniques. In INTERNATIONAL CONFER-
ENCE ON MULTIMODAL INTERACTION (ICMI Companion ’24), Novem-
ber 04–08, 2024, San Jose, Costa Rica. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3686215.3690147

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0463-5/24/11
https://doi.org/10.1145/3686215.3690147

1 Introduction
Malware, malicious software designed to disrupt, damage, or gain
unauthorized access to computer systems, poses a signifcant threat
to cybersecurity worldwide, impacting businesses, governments,
and individuals alike. This threat is especially pronounced in Latin
America, where a 2023 Ernst & Young report indicated that 91% of
companies reported a cyber incident, and 62% experienced a data
breach.1 These breaches impose a signifcant burden on medium
and small companies, with each data breach costing $4.45 million
on average.2 To combat these attacks, it is essential to understand
the capabilities of malicious software through malware analysis.
There are two main methods of malware analysis: static and dy-
namic analysis. Static analysis examines the malicious code without
executing it. In contrast, dynamic analysis observes the behavior
of malware as it runs in a controlled environment (i.e. sandbox).

Unfortunately, modern malware employ various evasive tech-
niques, such as code obfuscation and sandbox detection, to conceal
their malicious capabilities from analysis. A recent study high-
lighted that analyzing malware that contain evasion techniques
remains one of the most challenging tasks in practice, even for ex-
perienced malware analysts [24]. More specifcally, Yong et al. [24]
found that analysts must resort to the time-consuming process of
switching between dynamic and static analysis when automated
methods fail to overcome evasive checks, allowing malware to hide
their malicious behaviors. Additionally, this complex process de-
mands highly skilled malware analysts, a critical limitation given
the signifcant shortage of qualifed cybersecurity professionals.3

Over the years, signifcant eforts have been made to address
malware evasion challenges that impede automated analysis. One
common approach focuses on decreasing the opportunities for
malware to detect it is being analyzed, either by leveraging more
transparent monitoring environments [2, 7, 10, 18, 22] or explicitly
hiding artifacts that reveal the true nature of the execution envi-
ronment [3, 6, 8]. Despite the efectiveness of these approaches,
these approaches are often limited to handling known evasion tech-
niques. To bypass novel evasion techniques, more active strategies
were developed to force malware to reveal hidden behaviors. Two
common methods are forced execution [5, 11, 25] and symbolic ex-
ecution [9, 19]. However, both strategies face time constraints and
struggle to handle diverse conditions, often failing due to what is
commonly known as the path explosion problem. Moreover, when

1EY Report on Cyber Incidents in Latin American Companies
2IBM Cost of a Data Breach Report 2023
3CSonline Cybersecurity Workforce Shortage

36

https://doi.org/10.1145/3686215.3690147
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3686215.3690147
https://www.csoonline.com/article/657598/cybersecurity-workforce-shortage-reaches-4-million-despite-significant-recruitment-drive.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3686215.3690147&domain=pdf&date_stamp=2024-11-04

ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica Miuyin Yong Wong, Kevin Valakuzhy, Mustaque Ahamad, Doug Blough, and Fabian Monrose

these approaches fail, they do not provide useful insights that ana-
lysts can integrate into their workfow.

To help fll this gap, we investigate the potential of large lan-
guage models (LLMs) in assisting human analysts bypass evasion
techniques. To accomplish this, we task the GPT 4o LLM with
identifying the necessary conditions to trigger 56 distinct logic
bombs, which closely resemble evasive techniques found in mal-
ware. To evaluate the efectiveness of the LLM, we also conduct the
frst comparative analysis between symbolic analysis and LLMs in
the context of malware analysis. Based on our evaluation, we not
only fnd that LLMs can aid in the process of bypassing evasion
techniques but also address some of the shortcomings of symbolic
analysis. The main contributions of this paper are the following:

• We identifed which weaknesses of symbolic execution can
be mitigated by LLMs.

• We tested LLMs efectiveness at identifying and overcoming
evasion techniques in real-world malware.

• We identifed weaknesses of LLMs that would beneft from
future work.

2 Related Work

2.1 Countering Evasive Malware
Over the years, several approaches have been proposed to ad-
dress evasion techniques that hinder automated analysis. These ap-
proaches can be grouped into two categories; preventative methods
and active methods. Preventative methods aim to mitigate evasion
techniques before executing the malware. The frst preventative ap-
proach focuses on improving the transparency of dynamic analysis
environments to prevent malware from detecting the controlled
analysis setting. This can be achieved through bare-metal-based
analysis [12, 17, 26] or hypervisor-based analysis [2, 7, 10]. Bare-
metal analysis runs directly on hardware to avoid detection by
malware, whereas hypervisor-based analysis uses virtualization to
create isolated environments. The second preventative approach
leverages existing knowledge about evasion techniques by employ-
ing predefned rules to hide known artifacts of the analysis envi-
ronment [3, 6, 8, 15]. However, these two approaches do not adapt
to malware with new methods of detecting analysis environments.

In contrast, active methods take a more direct approach by in-
teracting with the malware during execution. Forced execution,
manipulates the execution fow of the malware to bypass condi-
tional checks used to hide malicious behaviors [5, 11, 25]. Another
active strategy is symbolic execution, which simulates running
malware by representing program variables and execution paths
with symbolic expressions [1, 9, 19, 21]. These symbolic expres-
sions can be passed to a constraint solver to determine the specifc
conditions required to trigger diferent behaviors. Unfortunately,
both forced execution and symbolic execution face the limitation
of path explosion, where the number of possible execution paths
grows exponentially with the complexity of the program, making it
computationally infeasible to explore all paths. Our approach also
applies an active strategy while addressing their limitations.

2.2 Application of LLMs in Malware
Research in Large Language Models is rapidly expanding, driven
by its potential to transform various felds, including cybersecurity.

Notably, recent studies have demonstrated LLMs’ capability in
assisting cybercriminals to develop malware attacks [4, 16, 23].
These studies underscore the alarming potential of LLMs to enhance
the abilities of cybercriminals, making malware more complex and
difcult to detect. Despite this concern, there has been limited
research into exploring the LLMs’ potential to assist in the defense
against malware attacks, a critical area to strengthen cybersecurity
defenses [13]. Our study addresses this gap by exploring how LLMs
can support human malware analysts in their analysis workfow.

3 Methodology
To evaluate the potential of LLMs to improve on existing auto-
mated code analysis systems and assist human malware analysts
in bypassing evasion techniques, we investigate LLMs’ efective-
ness in analyzing challenging scenarios, such as logic bombs. Logic
bombs are code designed to execute specifc functionality only
when certain conditions are met. These conditions are analogous to
the evasive techniques employed by malware to conceal malicious
behavior from malware analysis systems. We specifcally focus
on logic bombs that exploit well-known weaknesses of symbolic
execution–such as unbounded loops and network interactions–as
they provide a starting point for understanding how LLMs can
enhance a malware analyst’s toolkit.

For our LLM approach, we begin by assuming an analyst has run
evasive code, such as an evasive malware sample or a logic bomb,
and is tasked with fguring out how to bypass the evasive code.
As evasive techniques will often cause malware to stop executing
before exhibiting malicious behavior, simply monitoring the code
that has been executed can narrow down which code is responsible
for the evasive technique. We use a disassembler to extract the
assembly code for the evasive technique along with any functions
it calls outside of standard libraries. We avoid including standard
library functions, as it greatly increases the tokens sent to the model.
Since the model already knows the behavior of these commonly
used functions, including them adds little value.

Next, we feed the disassembled code to a decompiler, which con-
verts assembly into C-like code while preserving approximately the
same behavior. Decompilers aid human understanding by translat-
ing complex lower-level code into simpler high-level concepts. We
fnd that decompilation also helps LLMs correctly reason about the
consequences of the code. The decompiled code is then provided to
an LLM that is prompted to identify the correct function argument
required to obtain the desired return value of the logic bomb. The
prompt we give explicitly asks the model to explain its procedure
step-by-step so that we can understand cases where it fails to fnd
the right answer. The model is additionally capable of writing and
executing its own Python scripts, which we have found improves
the model’s ability to correctly validate results or identify correct
solutions through trying a variety of inputs. Finally, we validate the
response by running the test executable with the output specifed
by the LLM to check if it triggers the logic bomb.

Our results on these logic bombs are compared to the results
collected by Xu et al. [20] for symbolic analysis systems. These
systems ingest the whole logic bomb executable, processing more
code than what we provide the LLM. However, the extra code for
each executable is limited to code introduced by the compiler and

37

Understanding LLMs Ability to Aid Malware Analysts in Bypassing Evasion Techniques ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica

standard libraries, which are necessary for the symbolic analysis
system to accurately model the entire executable’s behavior.

3.1 Dataset and Tools
We utilize an existing dataset from Xu et al. [20] consisting of 66
C and C++ programs. Each program contains a logic bomb that
exploits a known weakness in symbolic analysis, such as handling
multi-threaded code, loops, or external functions. We select the
subset of logic bombs that involve fnding the correct command
line input to pass to the program, discarding logic bombs that
require modifying the host system, such as altering the system time.
Additionally, we excluded test cases involving integer overfows, as
compiler optimizations removed the code for the logic bomb, even
at the lowest optimization level (O0). Our tests were run with the 56
remaining logic bombs. In cases where tests are non-deterministic,
we consider the answer given by the model to be correct if it matches
the answer provided by the authors.

We chose the GPT 4o model from OpenAI for our LLM agent
and complemented it with the IDA Pro disassembler and decom-
piler to extract information from each executable. The cost of using
the GPT 4o to run our tests on all 56 logic bombs was approxi-
mately 2 dollars. We compare our results with those from the best
performing symbolic analysis tool, angr [14], on the logic bomb
benchmark [20]. We reran the publicly available benchmark on a
more recent version of angr (v9.2.102) than originally used, how-
ever, we found that these results were slightly worse than angr’s
performance in the benchmark paper, with 4 fewer logic bombs
triggered. Replicating the version of angr used in their work and
compiling their benchmark with compilers available at the time of
their publishing did not resolve these discrepancies. To eliminate
any chance that our reproduction diminished angr’s performance,
we compare against the results from the original benchmark run
by Xu et al. [20], which represent the best results achieved by angr.

4 Results
Our results, shown in Table 1, show that GPT 4o performs better
than angr, the best performing symbolic analysis system on the logic
bomb benchmark from Xu et al. [20]. More importantly, in cases
where GPT 4o did not yield a correct answer, we could use the step-
by-step reasoning provided in the model’s output to understand
the type of failure that occurred. In fact, after understanding the
failure, we found that with minimal interaction, such as providing
explicitly requested information or questioning stated assumptions,
we could enable the model to come to the correct conclusion.

4.1 Where the LLM succeeds
The category where LLMs show a clear advantage over symbolic
execution is in the handling of loops. Loops create many possi-
ble execution states, often leading to state explosions that hinder
symbolic execution. In each of these cases, rather than attempt-
ing to solve the problem by mathematically breaking down the
code, GPT 4o writes and executes a Python script containing a re-
implementation of the logic bomb and identifes the correct value
through brute force.

Additionally, GPT 4o is also able to identify answers to certain
logic bombs without executing code, leading to an improvement in

Table 1: Results of GPT 4o and angr in solving various logic
bombs from Xu et al. [20]. Categories represent areas of dif-
fculty for symbolic analysis.

Category # Tests GPT 4o angr

Bufer Overfow 4 0 2
Contextual Symbolic Value 4 2 0
Covert Propagation 10 7 4
Crypto Functions 2 0 0
External Functions 8 4 3
Floating Point 5 2 2
Loop 5 4 0
Parallel Program 5 1 0
Symbolic Jump 4 2 2
Symbolic Memory 9 7 7
Total 56 29 20

Table 2: Reasons that GPT 4o failed to trigger 27 logic bombs.

Failure Reason # Cases

Inaccurate or incomplete pseudocode 13
Incorrect assumption 6
Verifed in Python, Not C 3
Answer required system modifcation 2
Returned intermediate result 1
Unsuccessful “guess and check” 1
Mathematical error 1

handling covert propagation. This category contains logic bombs
that hide data fow using code constructs that are challenging for
symbolic analysis to model. For example, a logic bomb that writes
a value to a fle and later reopens the fle to retrieve the same value
causes symbolic analysis systems to lose track that the values are
likely the same. In contrast, the GPT 4o model accurately tracks this
connection and can predict the likely outcomes of interactions with
the operating system. The model’s assumptions about the likely
behavior of code works to its advantage in multiple test cases, but
assumptions made for other logic bombs can cause the model to
fnd an incorrect result.

A related category to covert propagation is the contextual sym-
bolic value category, where inputs rely on external knowledge
to trigger the logic bomb. For example, the required input for
“ping_csv” is an IP address that responds to an ICMP echo packet.
The GPT 4o model identifes this criteria for the IP address, and
correctly states that the default IP address for localhost (127.0.0.1)
can be used to handle this logic bomb. Even when GPT 4o does not
provide a correct answer, the model still manages to identify the
correct criteria the answer must fulfll. For example, in the logic
bomb “fle_csv”, the model correctly identifes that the name of an
openable fle is needed and responds that the specifed flename
must be created prior to running the logic bomb.

38

ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica Miuyin Yong Wong, Kevin Valakuzhy, Mustaque Ahamad, Doug Blough, and Fabian Monrose

4.2 Where the LLM falls short
To determine ways to improve the LLM’s performance in bypassing
evasive code, we categorized the reasons it failed to trigger 27 of the
logic bombs by analyzing the step-by-step reasoning present in the
model’s output. Our results, shown in Table 2, indicate that almost
half of the failures are caused by inaccuracies in the generated
pseudocode, where values critical to the solution are absent. In these
cases, the model assigns arbitrary values to undeclared variables
or simply ignores important code. Preliminary tests show that
allowing the model to request additional details on missing code and
data can address many of these cases. The model also made incorrect
assumptions about the behavior of code in 6 cases. For example,
while analyzing the logic bomb “2thread_pp_l1”, the LLM’s response
acknowledges that multi-threaded code could change the order of
operations, but dismisses this case as “unlikely” before returning
an answer the model acknowledges is incorrect. Thankfully, these
incorrect assumptions are explicitly acknowledged in the model’s
response, allowing a human analyst to ask the model to challenge
these assumptions in subsequent prompts.

Another implicit assumption made by the model was that the
results of Python validation scripts would carry over to the logic
bombs written in C and C++. For example, the LLM identifed a
random number generator seed in Python that seemingly fulflled
the criteria for the logic bomb “rand_ef_l2”, but the seed exhibited
diferent behavior when fed to the random number generator in the
C standard libraries. In this case, a human analyst can explicitly ask
the model to validate using C code. Surprisingly, when we made
this request, the model used a Python script to write, compile, and
execute C code which found the correct seed.

Lastly, we found that simple logic errors, such as computing
the modulus operator incorrectly or returning the result of an
intermediate calculation, occurred relatively infrequently. Even
so, no such errors were observed in the Python scripts the model
generated. We plan to investigate whether pushing the model to
express calculations through code can reduce the occurrence of
these simple logic errors.

4.3 Investigating Real World Evasive Malware
In addition to comparing the GPT 4o model against symbolic exe-
cution tools on logic bombs, we also explored real-world instances
where AI model can help identify how to bypass evasive checks in
malware. To test this task, we use instances of real-world malware
that only execute under specifc conditions pulled from previous
malware analyses we have conducted. The frst evasive malware
sample we tested4 stops execution if the operating system is con-
fgured with either an English or Russian keyboard layout. After
providing the GPT4o model with a function comprised of 1 KB of
code containing the check for the keyboard layout, the model suc-
cessfully identifed the code responsible for the evasive tactic and
provided the keyboard layouts to avoid. The second evasive mal-
ware sample5 checks to see whether a certain flepath ("C:\\Diebold")
exists, as the malware is designed to target Diebold ATMs. By sim-
ply passing in the function containing the check, GPT4o identifed
the fle needed to progress.

4sha1: ac1eb847a456b851b900f6899a9fd13fd6fbec7d
5sha1: 0d484d7adc95caf1b375c30dc949a32bd8b932c1

In both of these examples, the output provided by GPT 4o goes
beyond identifying evasive criteria, it also helps human analysts
complete essential tasks. After identifying the evasive check, the
GPT 4o model provides potential modifcations that can be made
to the malware or execution environment to bypass the evasive
check. While the modifcations required to bypass the evasion tech-
niques shown above are seemingly obvious, more sophisticated
evasion techniques may require modifying the malware sample or
overriding operating system behavior using techniques such as API
hooking. In such cases, the model can guide analysts toward the
appropriate methods for bypassing the evasive check. Additionally,
the model’s detailed human-readable explanations are highly bene-
fcial for analysts when writing threat reports, another important
task performed by malware analysts.

Unfortunately, applying symbolic analysis in these cases is non-
trivial. This is primarily due to the known limitation of symbolic
analysis systems in correctly handling calls to external code, such
as Windows APIs and system calls. Hence, efective use of sym-
bolic analysis tools requires more than just providing the function
containing the evasive tactic.

5 Limitations and Future Work
A major challenge in this study is ensuring that our results gen-
eralize beyond this test set, as the publicly available test samples
and their answers may be part of the training data for the GPT 4o
model. To enhance confdence in the generalizability of our fnd-
ings, we plan to test the LLM on novel test cases that were not
publicly available at the time of its training. Another limitation
of our current approach arises when an analyst fails to locate the
evasive tactic within the binary. To mitigate this limitation, we
plan on measuring the models ability to explore executables and
discover evasive techniques on its own. We also aim to understand
the impact of diferent inputs to the LLM’s ability to handle evasive
code. More specifcally, we plan on measuring the impact that these
and other tools used by malware analysts, such as debuggers, can
have on LLM’s reasoning of code.

Moreover, we foresee conducting a user study involving human
malware analysts to assess the practical utility and impact of inte-
grating LLMs in their workfow. This is driven by our hypothesis
that even when LLMs fail to provide the correct solution, their
response containing step-by-step instructions on identifying and
bypassing evasion checks can aid human analysts. Furthermore,
we believe this can also highlight the capability of human analysts
to improve the results of LLMs by pushing back on inappropriate
assumptions that are explicitly declared by the model.

6 Conclusion
In this study, we found that LLM-based systems can surpass ex-
isting symbolic analysis tools in analyzing certain complex code
structures. Moreover, we showcase that even when LLMs fail, the
human-readable output of the LLM can still assist human analysts
in accomplishing their daily tasks. Finally, we demonstrated cases
in real-world malware where LLMs can locate evasive techniques
and identify methods to bypass them. These preliminary results
show encouraging potential for the use of generative AI to aid
human analysts and reduce the impact of malicious software.

39

Understanding LLMs Ability to Aid Malware Analysts in Bypassing Evasion Techniques

References
[1] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-bounded

DSE: targeting infeasibility questions on obfuscated codes. In 2017 IEEE Sympo-
sium on Security and Privacy. IEEE, 633–651.

[2] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the 15th
ACM conference on Computer and communications security. 51–62.

[3] Nicola Galloro, Mario Polino, Michele Carminati, Andrea Continella, and Stefano
Zanero. 2022. A Systematical and longitudinal study of evasive behaviors in
windows malware. Computers & security 113 (2022), 102550.

[4] Maanak Gupta, CharanKumar Akiri, Kshitiz Aryal, Eli Parker, and Lopamudra
Praharaj. 2023. From chatgpt to threatgpt: Impact of generative ai in cybersecurity
and privacy. IEEE Access (2023).

[5] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. 2011. The power of
procrastination: detection and mitigation of execution-stalling malicious code. In
Proceedings of the 18th ACM conference on Computer and communications security.
285–296.

[6] Kevin Leach, Chad Spensky, Westley Weimer, and Fengwei Zhang. 2016. Towards
transparent introspection. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 248–259.

[7] Tamas K Lengyel, Steve Maresca, Bryan D Payne, George D Webster, Sebastian
Vogl, and Aggelos Kiayias. 2014. Scalability, fdelity and stealth in the DRAKVUF
dynamic malware analysis system. In Proceedings of the 30th annual computer
security applications conference. 386–395.

[8] Lorenzo Mafa, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone Aonzo,
and Davide Balzarotti. 2021. Longitudinal study of the prevalence of malware
evasive techniques. arXiv preprint arXiv:2112.11289 (2021).

[9] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. Loop: Logic-oriented
opaque predicate detection in obfuscated binary code. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. 757–768.

[10] Anh M Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T King,
and Hai D Nguyen. 2009. Mavmm: Lightweight and purpose built vmm for
malware analysis. In 2009 Annual Computer Security Applications Conference.
IEEE, 441–450.

[11] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. [n. d.]. X-force: Force-executing binary programs for security applications.
In USENIX Security symposium 2014.

[12] Paul Royal. 2012. Entrapment: Tricking malware with transparent, scalable
malware analysis. talk at Black Hat (2012).

[13] Venkata Ramana Saddi, Santhosh Kumar Gopal, Abdul Sajid Mohammed, S
Dhanasekaran, and Mahaveer Singh Naruka. 2024. Examine the role of generative
AI in enhancing threat intelligence and cyber security measures. In 2024 2nd
International Conference on Disruptive Technologies (ICDT). IEEE, 537–542.

[14] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Ofensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[15] Chad Spensky, Hongyi Hu, and Kevin Leach. 2016. LO-PHI: Low-Observable
Physical Host Instrumentation for Malware Analysis.. In NDSS.

[16] Fabian Teichmann. 2023. Ransomware attacks in the context of generative
artifcial intelligence—an experimental study. International Cybersecurity Law
Review 4, 4 (2023), 399–414.

[17] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo
Chen, and Sam King. 2006. Automated web patrol with strider honeymonkeys.
In Proceedings of the 2006 Network and Distributed System Security Symposium.
35–49.

[18] Carsten Willems, Thorsten Holz, and Felix Freiling. 2007. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security & Privacy 5, 2 (2007),
32–39.

[19] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifable
approach to partially-virtualized binary code simplifcation. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
442–458.

[20] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R Lyu. 2018. Benchmarking the
capability of symbolic execution tools with logic bombs. IEEE Transactions on
Dependable and Secure Computing (2018).

[21] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015.
A generic approach to automatic deobfuscation of executable code. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 674–691.

[22] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012. V2e:
combining hardware virtualization and softwareemulation for transparent and
extensible malware analysis. In Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments. 227–238.

[23] Yagmur Yigit, William J Buchanan, Madjid G Tehrani, and Leandros Maglaras.
2024. Review of generative ai methods in cybersecurity. arXiv preprint
arXiv:2403.08701 (2024).

ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica

[24] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M Blough,
Elissa M Redmiles, and Mustaque Ahamad. 2021. An inside look into the prac-
tice of malware analysis. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 3053–3069.

[25] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. Pmp: Cost-efective forced execution with
probabilistic memory pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 1121–1138.

[26] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. 2013. Spectre: A
dependable introspection framework via system management mode. In 2013 43rd
Annual IEEE/IFIP international conference on dependable systems and networks
(DSN). IEEE, 1–12.

40

	Abstract
	1 Introduction
	2 Related Work
	2.1 Countering Evasive Malware
	2.2 Application of LLMs in Malware

	3 Methodology
	3.1 Dataset and Tools

	4 Results
	4.1 Where the LLM succeeds
	4.2 Where the LLM falls short
	4.3 Investigating Real World Evasive Malware

	5 Limitations and Future Work
	6 Conclusion
	References

