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Abstract 
Over the past few years, the threat of malware has become increas-
ingly evident, posing a signifcant risk to cybersecurity worldwide 
and driving extensive research eforts to prevent and mitigate these 
attacks. Despite numerous eforts to automate malware analysis, 
these systems are constantly thwarted by evasive techniques devel-
oped by malware authors. As a result, the analysis of sophisticated 
evasive malware falls into the hands of human malware analysts, 
who must undertake the time-consuming process of overcoming 
each evasive technique to uncover malware’s malicious behaviors. 
This highlights the need for approaches that aid malware analysts 
in this process. Although active measures, such as forced execution 
and symbolic analysis, can automatically circumvent some evasive 
checks, they sufer from limitations like path explosion and fail 
to provide useful insights that analysts can use in their workfow. 
To fll this gap, we investigate how large language models (LLMs) 
can address shortcomings of symbolic analysis through the frst 
comparative analysis between the two in bypassing evasion tech-
niques. Our study leads to three key fndings: (i) we fnd that LLMs 
outperform symbolic analysis in bypassing evasive code, especially 
in the presence of common code patterns, such as loops, which 
have historically posed a challenge for symbolic analysis, (ii) we 
show that LLMs correctly identify methods of bypassing evasive 
techniques in real-world malware, and (iii) we highlight how even 
in LLMs failure modes, human malware analysts can beneft from 
the step-by-step reasoning provided by the model. 
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1 Introduction 
Malware, malicious software designed to disrupt, damage, or gain 
unauthorized access to computer systems, poses a signifcant threat 
to cybersecurity worldwide, impacting businesses, governments, 
and individuals alike. This threat is especially pronounced in Latin 
America, where a 2023 Ernst & Young report indicated that 91% of 
companies reported a cyber incident, and 62% experienced a data 
breach.1 These breaches impose a signifcant burden on medium 
and small companies, with each data breach costing $4.45 million 
on average.2 To combat these attacks, it is essential to understand 
the capabilities of malicious software through malware analysis. 
There are two main methods of malware analysis: static and dy-
namic analysis. Static analysis examines the malicious code without 
executing it. In contrast, dynamic analysis observes the behavior 
of malware as it runs in a controlled environment (i.e. sandbox). 

Unfortunately, modern malware employ various evasive tech-
niques, such as code obfuscation and sandbox detection, to conceal 
their malicious capabilities from analysis. A recent study high-
lighted that analyzing malware that contain evasion techniques 
remains one of the most challenging tasks in practice, even for ex-
perienced malware analysts [24]. More specifcally, Yong et al. [24] 
found that analysts must resort to the time-consuming process of 
switching between dynamic and static analysis when automated 
methods fail to overcome evasive checks, allowing malware to hide 
their malicious behaviors. Additionally, this complex process de-
mands highly skilled malware analysts, a critical limitation given 
the signifcant shortage of qualifed cybersecurity professionals.3 

Over the years, signifcant eforts have been made to address 
malware evasion challenges that impede automated analysis. One 
common approach focuses on decreasing the opportunities for 
malware to detect it is being analyzed, either by leveraging more 
transparent monitoring environments [2, 7, 10, 18, 22] or explicitly 
hiding artifacts that reveal the true nature of the execution envi-
ronment [3, 6, 8]. Despite the efectiveness of these approaches, 
these approaches are often limited to handling known evasion tech-
niques. To bypass novel evasion techniques, more active strategies 
were developed to force malware to reveal hidden behaviors. Two 
common methods are forced execution [5, 11, 25] and symbolic ex-
ecution [9, 19]. However, both strategies face time constraints and 
struggle to handle diverse conditions, often failing due to what is 
commonly known as the path explosion problem. Moreover, when 

1EY Report on Cyber Incidents in Latin American Companies 
2IBM Cost of a Data Breach Report 2023 
3CSonline Cybersecurity Workforce Shortage 
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these approaches fail, they do not provide useful insights that ana-
lysts can integrate into their workfow. 

To help fll this gap, we investigate the potential of large lan-
guage models (LLMs) in assisting human analysts bypass evasion 
techniques. To accomplish this, we task the GPT 4o LLM with 
identifying the necessary conditions to trigger 56 distinct logic 
bombs, which closely resemble evasive techniques found in mal-
ware. To evaluate the efectiveness of the LLM, we also conduct the 
frst comparative analysis between symbolic analysis and LLMs in 
the context of malware analysis. Based on our evaluation, we not 
only fnd that LLMs can aid in the process of bypassing evasion 
techniques but also address some of the shortcomings of symbolic 
analysis. The main contributions of this paper are the following: 

• We identifed which weaknesses of symbolic execution can 
be mitigated by LLMs. 

• We tested LLMs efectiveness at identifying and overcoming 
evasion techniques in real-world malware. 

• We identifed weaknesses of LLMs that would beneft from 
future work. 

2 Related Work 

2.1 Countering Evasive Malware 
Over the years, several approaches have been proposed to ad-
dress evasion techniques that hinder automated analysis. These ap-
proaches can be grouped into two categories; preventative methods 
and active methods. Preventative methods aim to mitigate evasion 
techniques before executing the malware. The frst preventative ap-
proach focuses on improving the transparency of dynamic analysis 
environments to prevent malware from detecting the controlled 
analysis setting. This can be achieved through bare-metal-based 
analysis [12, 17, 26] or hypervisor-based analysis [2, 7, 10]. Bare-
metal analysis runs directly on hardware to avoid detection by 
malware, whereas hypervisor-based analysis uses virtualization to 
create isolated environments. The second preventative approach 
leverages existing knowledge about evasion techniques by employ-
ing predefned rules to hide known artifacts of the analysis envi-
ronment [3, 6, 8, 15]. However, these two approaches do not adapt 
to malware with new methods of detecting analysis environments. 

In contrast, active methods take a more direct approach by in-
teracting with the malware during execution. Forced execution, 
manipulates the execution fow of the malware to bypass condi-
tional checks used to hide malicious behaviors [5, 11, 25]. Another 
active strategy is symbolic execution, which simulates running 
malware by representing program variables and execution paths 
with symbolic expressions [1, 9, 19, 21]. These symbolic expres-
sions can be passed to a constraint solver to determine the specifc 
conditions required to trigger diferent behaviors. Unfortunately, 
both forced execution and symbolic execution face the limitation 
of path explosion, where the number of possible execution paths 
grows exponentially with the complexity of the program, making it 
computationally infeasible to explore all paths. Our approach also 
applies an active strategy while addressing their limitations. 

2.2 Application of LLMs in Malware 
Research in Large Language Models is rapidly expanding, driven 
by its potential to transform various felds, including cybersecurity. 

Notably, recent studies have demonstrated LLMs’ capability in 
assisting cybercriminals to develop malware attacks [4, 16, 23]. 
These studies underscore the alarming potential of LLMs to enhance 
the abilities of cybercriminals, making malware more complex and 
difcult to detect. Despite this concern, there has been limited 
research into exploring the LLMs’ potential to assist in the defense 
against malware attacks, a critical area to strengthen cybersecurity 
defenses [13]. Our study addresses this gap by exploring how LLMs 
can support human malware analysts in their analysis workfow. 

3 Methodology 
To evaluate the potential of LLMs to improve on existing auto-
mated code analysis systems and assist human malware analysts 
in bypassing evasion techniques, we investigate LLMs’ efective-
ness in analyzing challenging scenarios, such as logic bombs. Logic 
bombs are code designed to execute specifc functionality only 
when certain conditions are met. These conditions are analogous to 
the evasive techniques employed by malware to conceal malicious 
behavior from malware analysis systems. We specifcally focus 
on logic bombs that exploit well-known weaknesses of symbolic 
execution–such as unbounded loops and network interactions–as 
they provide a starting point for understanding how LLMs can 
enhance a malware analyst’s toolkit. 

For our LLM approach, we begin by assuming an analyst has run 
evasive code, such as an evasive malware sample or a logic bomb, 
and is tasked with fguring out how to bypass the evasive code. 
As evasive techniques will often cause malware to stop executing 
before exhibiting malicious behavior, simply monitoring the code 
that has been executed can narrow down which code is responsible 
for the evasive technique. We use a disassembler to extract the 
assembly code for the evasive technique along with any functions 
it calls outside of standard libraries. We avoid including standard 
library functions, as it greatly increases the tokens sent to the model. 
Since the model already knows the behavior of these commonly 
used functions, including them adds little value. 

Next, we feed the disassembled code to a decompiler, which con-
verts assembly into C-like code while preserving approximately the 
same behavior. Decompilers aid human understanding by translat-
ing complex lower-level code into simpler high-level concepts. We 
fnd that decompilation also helps LLMs correctly reason about the 
consequences of the code. The decompiled code is then provided to 
an LLM that is prompted to identify the correct function argument 
required to obtain the desired return value of the logic bomb. The 
prompt we give explicitly asks the model to explain its procedure 
step-by-step so that we can understand cases where it fails to fnd 
the right answer. The model is additionally capable of writing and 
executing its own Python scripts, which we have found improves 
the model’s ability to correctly validate results or identify correct 
solutions through trying a variety of inputs. Finally, we validate the 
response by running the test executable with the output specifed 
by the LLM to check if it triggers the logic bomb. 

Our results on these logic bombs are compared to the results 
collected by Xu et al. [20] for symbolic analysis systems. These 
systems ingest the whole logic bomb executable, processing more 
code than what we provide the LLM. However, the extra code for 
each executable is limited to code introduced by the compiler and 
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standard libraries, which are necessary for the symbolic analysis 
system to accurately model the entire executable’s behavior. 

3.1 Dataset and Tools 
We utilize an existing dataset from Xu et al. [20] consisting of 66 
C and C++ programs. Each program contains a logic bomb that 
exploits a known weakness in symbolic analysis, such as handling 
multi-threaded code, loops, or external functions. We select the 
subset of logic bombs that involve fnding the correct command 
line input to pass to the program, discarding logic bombs that 
require modifying the host system, such as altering the system time. 
Additionally, we excluded test cases involving integer overfows, as 
compiler optimizations removed the code for the logic bomb, even 
at the lowest optimization level (O0). Our tests were run with the 56 
remaining logic bombs. In cases where tests are non-deterministic, 
we consider the answer given by the model to be correct if it matches 
the answer provided by the authors. 

We chose the GPT 4o model from OpenAI for our LLM agent 
and complemented it with the IDA Pro disassembler and decom-
piler to extract information from each executable. The cost of using 
the GPT 4o to run our tests on all 56 logic bombs was approxi-
mately 2 dollars. We compare our results with those from the best 
performing symbolic analysis tool, angr [14], on the logic bomb 
benchmark [20]. We reran the publicly available benchmark on a 
more recent version of angr (v9.2.102) than originally used, how-
ever, we found that these results were slightly worse than angr’s 
performance in the benchmark paper, with 4 fewer logic bombs 
triggered. Replicating the version of angr used in their work and 
compiling their benchmark with compilers available at the time of 
their publishing did not resolve these discrepancies. To eliminate 
any chance that our reproduction diminished angr’s performance, 
we compare against the results from the original benchmark run 
by Xu et al. [20], which represent the best results achieved by angr. 

4 Results 
Our results, shown in Table 1, show that GPT 4o performs better 
than angr, the best performing symbolic analysis system on the logic 
bomb benchmark from Xu et al. [20]. More importantly, in cases 
where GPT 4o did not yield a correct answer, we could use the step-
by-step reasoning provided in the model’s output to understand 
the type of failure that occurred. In fact, after understanding the 
failure, we found that with minimal interaction, such as providing 
explicitly requested information or questioning stated assumptions, 
we could enable the model to come to the correct conclusion. 

4.1 Where the LLM succeeds 
The category where LLMs show a clear advantage over symbolic 
execution is in the handling of loops. Loops create many possi-
ble execution states, often leading to state explosions that hinder 
symbolic execution. In each of these cases, rather than attempt-
ing to solve the problem by mathematically breaking down the 
code, GPT 4o writes and executes a Python script containing a re-
implementation of the logic bomb and identifes the correct value 
through brute force. 

Additionally, GPT 4o is also able to identify answers to certain 
logic bombs without executing code, leading to an improvement in 

Table 1: Results of GPT 4o and angr in solving various logic 
bombs from Xu et al. [20]. Categories represent areas of dif-
fculty for symbolic analysis. 

Category # Tests GPT 4o angr 

Bufer Overfow 4 0 2 
Contextual Symbolic Value 4 2 0 
Covert Propagation 10 7 4 
Crypto Functions 2 0 0 
External Functions 8 4 3 
Floating Point 5 2 2 
Loop 5 4 0 
Parallel Program 5 1 0 
Symbolic Jump 4 2 2 
Symbolic Memory 9 7 7 
Total 56 29 20 

Table 2: Reasons that GPT 4o failed to trigger 27 logic bombs. 

Failure Reason # Cases 

Inaccurate or incomplete pseudocode 13 
Incorrect assumption 6 
Verifed in Python, Not C 3 
Answer required system modifcation 2 
Returned intermediate result 1 
Unsuccessful “guess and check” 1 
Mathematical error 1 

handling covert propagation. This category contains logic bombs 
that hide data fow using code constructs that are challenging for 
symbolic analysis to model. For example, a logic bomb that writes 
a value to a fle and later reopens the fle to retrieve the same value 
causes symbolic analysis systems to lose track that the values are 
likely the same. In contrast, the GPT 4o model accurately tracks this 
connection and can predict the likely outcomes of interactions with 
the operating system. The model’s assumptions about the likely 
behavior of code works to its advantage in multiple test cases, but 
assumptions made for other logic bombs can cause the model to 
fnd an incorrect result. 

A related category to covert propagation is the contextual sym-
bolic value category, where inputs rely on external knowledge 
to trigger the logic bomb. For example, the required input for 
“ping_csv” is an IP address that responds to an ICMP echo packet. 
The GPT 4o model identifes this criteria for the IP address, and 
correctly states that the default IP address for localhost (127.0.0.1) 
can be used to handle this logic bomb. Even when GPT 4o does not 
provide a correct answer, the model still manages to identify the 
correct criteria the answer must fulfll. For example, in the logic 
bomb “fle_csv”, the model correctly identifes that the name of an 
openable fle is needed and responds that the specifed flename 
must be created prior to running the logic bomb. 
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4.2 Where the LLM falls short 
To determine ways to improve the LLM’s performance in bypassing 
evasive code, we categorized the reasons it failed to trigger 27 of the 
logic bombs by analyzing the step-by-step reasoning present in the 
model’s output. Our results, shown in Table 2, indicate that almost 
half of the failures are caused by inaccuracies in the generated 
pseudocode, where values critical to the solution are absent. In these 
cases, the model assigns arbitrary values to undeclared variables 
or simply ignores important code. Preliminary tests show that 
allowing the model to request additional details on missing code and 
data can address many of these cases. The model also made incorrect 
assumptions about the behavior of code in 6 cases. For example, 
while analyzing the logic bomb “2thread_pp_l1”, the LLM’s response 
acknowledges that multi-threaded code could change the order of 
operations, but dismisses this case as “unlikely” before returning 
an answer the model acknowledges is incorrect. Thankfully, these 
incorrect assumptions are explicitly acknowledged in the model’s 
response, allowing a human analyst to ask the model to challenge 
these assumptions in subsequent prompts. 

Another implicit assumption made by the model was that the 
results of Python validation scripts would carry over to the logic 
bombs written in C and C++. For example, the LLM identifed a 
random number generator seed in Python that seemingly fulflled 
the criteria for the logic bomb “rand_ef_l2”, but the seed exhibited 
diferent behavior when fed to the random number generator in the 
C standard libraries. In this case, a human analyst can explicitly ask 
the model to validate using C code. Surprisingly, when we made 
this request, the model used a Python script to write, compile, and 
execute C code which found the correct seed. 

Lastly, we found that simple logic errors, such as computing 
the modulus operator incorrectly or returning the result of an 
intermediate calculation, occurred relatively infrequently. Even 
so, no such errors were observed in the Python scripts the model 
generated. We plan to investigate whether pushing the model to 
express calculations through code can reduce the occurrence of 
these simple logic errors. 

4.3 Investigating Real World Evasive Malware 
In addition to comparing the GPT 4o model against symbolic exe-
cution tools on logic bombs, we also explored real-world instances 
where AI model can help identify how to bypass evasive checks in 
malware. To test this task, we use instances of real-world malware 
that only execute under specifc conditions pulled from previous 
malware analyses we have conducted. The frst evasive malware 
sample we tested4 stops execution if the operating system is con-
fgured with either an English or Russian keyboard layout. After 
providing the GPT4o model with a function comprised of 1 KB of 
code containing the check for the keyboard layout, the model suc-
cessfully identifed the code responsible for the evasive tactic and 
provided the keyboard layouts to avoid. The second evasive mal-
ware sample5 checks to see whether a certain flepath ("C:\\Diebold") 
exists, as the malware is designed to target Diebold ATMs. By sim-
ply passing in the function containing the check, GPT4o identifed 
the fle needed to progress. 

4sha1: ac1eb847a456b851b900f6899a9fd13fd6fbec7d 
5sha1: 0d484d7adc95caf1b375c30dc949a32bd8b932c1 

In both of these examples, the output provided by GPT 4o goes 
beyond identifying evasive criteria, it also helps human analysts 
complete essential tasks. After identifying the evasive check, the 
GPT 4o model provides potential modifcations that can be made 
to the malware or execution environment to bypass the evasive 
check. While the modifcations required to bypass the evasion tech-
niques shown above are seemingly obvious, more sophisticated 
evasion techniques may require modifying the malware sample or 
overriding operating system behavior using techniques such as API 
hooking. In such cases, the model can guide analysts toward the 
appropriate methods for bypassing the evasive check. Additionally, 
the model’s detailed human-readable explanations are highly bene-
fcial for analysts when writing threat reports, another important 
task performed by malware analysts. 

Unfortunately, applying symbolic analysis in these cases is non-
trivial. This is primarily due to the known limitation of symbolic 
analysis systems in correctly handling calls to external code, such 
as Windows APIs and system calls. Hence, efective use of sym-
bolic analysis tools requires more than just providing the function 
containing the evasive tactic. 

5 Limitations and Future Work 
A major challenge in this study is ensuring that our results gen-
eralize beyond this test set, as the publicly available test samples 
and their answers may be part of the training data for the GPT 4o 
model. To enhance confdence in the generalizability of our fnd-
ings, we plan to test the LLM on novel test cases that were not 
publicly available at the time of its training. Another limitation 
of our current approach arises when an analyst fails to locate the 
evasive tactic within the binary. To mitigate this limitation, we 
plan on measuring the models ability to explore executables and 
discover evasive techniques on its own. We also aim to understand 
the impact of diferent inputs to the LLM’s ability to handle evasive 
code. More specifcally, we plan on measuring the impact that these 
and other tools used by malware analysts, such as debuggers, can 
have on LLM’s reasoning of code. 

Moreover, we foresee conducting a user study involving human 
malware analysts to assess the practical utility and impact of inte-
grating LLMs in their workfow. This is driven by our hypothesis 
that even when LLMs fail to provide the correct solution, their 
response containing step-by-step instructions on identifying and 
bypassing evasion checks can aid human analysts. Furthermore, 
we believe this can also highlight the capability of human analysts 
to improve the results of LLMs by pushing back on inappropriate 
assumptions that are explicitly declared by the model. 

6 Conclusion 
In this study, we found that LLM-based systems can surpass ex-
isting symbolic analysis tools in analyzing certain complex code 
structures. Moreover, we showcase that even when LLMs fail, the 
human-readable output of the LLM can still assist human analysts 
in accomplishing their daily tasks. Finally, we demonstrated cases 
in real-world malware where LLMs can locate evasive techniques 
and identify methods to bypass them. These preliminary results 
show encouraging potential for the use of generative AI to aid 
human analysts and reduce the impact of malicious software. 
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