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Abstract—With the complexity and interdependency of modern
software sharply rising, the impact of security vulnerabilities
and thus the value of broadly available patches has increased
drastically. Despite this, it is unclear if the current landscape
supports the same level of patch discoverability as that of
vulnerabilities — raising questions about whether patches are
simply scare or if they are just hard to find (i.e., are there a
lot of “secret patches” [1]), and, equally important, what kind
of patches are they (e.g., are they micropatchable). We seek
to assess the current state of patching by analyzing patches
for a four-month period of recent Common Vulnerabilities and
Exposures (CVEs). At first glance, the state of patching seems
abysmal — only one-fourth of CVEs have a labelled patch on the
National Vulnerability Database (NVD). However, by searching
for indicators on other popular security trackers (e.g., Debian’s),
we were able to find a lot more “secret patches”, but the ratio
of patched CVEs plateaued around fifty percent.

Examining the discovered patches, we noticed that many were
version updates, and less than one-tenth had machine accessible
source-code micropatches. Using a custom tool that leverages
contemporary version control, we were able to test the feasibility
of automatically applying these micropatches to older versions
of the software and found that approximately two-thirds of the
patches can be applied to at least one old version. The failure
cases were mostly due to lax practices pertaining to security fixes
and general software development (e.g., releasing the fix along
with other extraneous features). Reflecting on our investigations,
we surmise that between existence, discoverability, and versatility
of security patches, existence and discoverability are the bigger
problems. As to why this is the case, we find that the answer
may lie in the perverse incentive structures of the industry. We
conclude with possible remediations and hope that our work at
least raises public awareness of the current state of patching and
encourages future work to improve the situation.

Index Terms—micropatching; patch discovery; patch testing

I. INTRODUCTION

Our world is growing increasingly reliant on computer
technology in almost every way. As this technology becomes
more sophisticated and commonplace, the tendency of soft-
ware developers to rely on pre-existing libraries to accelerate
development grows. A side-effect of this is that security
vulnerabilities within common libraries can have far-reaching
impacts. The intended way to mitigate this is the release and
use of security patches. Unfortunately, many developers do not
patch their applications, leaving them dependent on outdated
libraries with known vulnerabilities [2]–[5].

However, it is not clear that the application developers are
completely at fault. A lot of library patches are disseminated
via version updates and therefore incur a high cost on the
application developer to ensure that the software is still func-
tional and correct after the update. This makes it difficult to
then use the released patches in certain fields. For example,
a substantial amount of IoT technology relies on specialized
variants of existing software libraries satisfying the unique
constraints of such platforms. In some enterprise settings, these
devices may be so old that the developers of the embedded
software are long gone and thus manual verification of the
correctness of a complete update is difficult. Ideally, we would
instead want micropatches, or changes that fix the security
vulnerability without altering other semantics of the program,
as they are much more easily verifiable. To this end, the
U.S. Defense Advanced Research Projects Agency recently
announced the Assured Micropatching (AMP) program [6],
dedicated to advancing research in safely and automatically
patching vulnerable devices in critical infrastructure.

Motivated by the need of expediently patching legacy
code in mission critical systems, we set out to understand
the feasibility of automatically integrating new patches into
old versions of software libraries. Our approach is primarily
developer-facing, taking the stance of someone dependent on a
specific version of a library and seeing whether they can, upon
learning of a vulnerability in the latest version of library, find
a patch for it and automatically apply it to their own version.

We performed an evaluation of the feasibility of mi-
cropatching security vulnerabilities by asking several pertinent
questions, including: (RQ1) whether disclosed vulnerabilities
have publicly available patches; (RQ2) what percentage of
the patches are machine-accessible micropatches that can be
applied as is, i.e., without relying on semantic-awareness or
static analysis, and (RQ3) what factors may be related with
whether patches are released or not. To answer these questions,
we embark on an effort with a scope and approach that sets
us apart from prior works on patch applicability [7], [8], and
circumvents scalability issues inherit in such approaches. A
summary of how we approached these research questions can
be found in Figure 1.

Our findings were quite troubling at first glance — only
about one-fourth of CVEs in the National Vulnerability
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Database (NVD) have listed patches, and there are a significant
number of data entry errors in this reporting. However, we
were able to find “secret patches” for many other CVEs by
going beyond NVD and searching for indicators on other
security trackers (e.g.,, those by Debian, SecurityFocus, and
vendors like Apple). But, we experienced diminishing returns
in our ability to find new patched CVEs with each additional
datasource, leading us to conclude that at most half of all
CVEs have publicly listed patches — an observation in line
with modelling results conducted by MITRE [9]. However,
almost half of these “patches” are software updates rather
than actual patches, and are thus largely unusable by users
who need guaranteed compatibility. The other half is split
between direct links to patches and unstructured references
(e.g., mailing lists, bug trackers, or forums). While the latter
may contain patches, their unstructured nature makes it hard
to extract the patches automatically.

However, for the patches we could extract, the outlook is
quite positive. We found that about two-thirds of available
patches can be applied automatically using standard software
management tools. Patches that cannot be applied are often
due to lax policies regarding the release of security fixes —
library maintainers often bundle such fixes together with major
releases and other extraneous changes, making them hard to
isolate and apply as a hot fix. Thus, even many of the patches
we found are not true micropatches. Furthermore, we found
that certain libraries release new versions infrequently. Thus,
any infrastructure that relies on older versions of a library
will suffer from known, severe vulnerabilities — potentially
for years — despite the availability of existing patches.

Our results show that the primary threat to the feasibility
of automated micropatching does not come from the difficulty
of applying, building, testing, or verifying patches (which is
already a Herculean effort in and of itself). Instead, it comes
from acquiring micropatches for software vulnerabilities in the
first place. We suspect that this dearth of publicly available
micropatches is partially caused by the current incentive
structure of patching software: while there are bug bounties
that provide incentive for the discovery of vulnerabilities, there
is little to no immediate incentive for maintainers to patch
those in a modular way. Although there are incentives for 3rd-
party service providers to bridge the gap between maintainers
and users by creating their own micropatches,1 it is also in
their business interest to keep those patches private.

II. APPROACH

Our objective is to determine the general patchability of
security vulnerabilities. For that, we require a database of
security vulnerabilities to survey — ideally ones that would be
representative or hold significant interest. As such, we looked
to Common Vulnerabilities and Exposures (CVEs). A CVE
is a public record of a cybersecurity vulnerability in a piece
of software. These records are hosted by MITRE [10] and
synchronized with the National Vulnerability Database (NVD)

1There are indeed companies that are providing this service, e.g., Snyk.

Patch Tester

Patch Finder

Patch 
Classification

Patchable Version

✓ v3.2.1 (current)

✗ v3.2.0

Testing... v3.1.9

... v3.1.8

Fig. 1. A summary of our research approach: for each Common Vulnerability
Enumeration (CVE), the National Vulnerability Database (NVD) maintains a
list of publicly available references. We scan the references and classify them
into different categories of accessibility (RQ1). When we encounter machine
accessible micropatches (e.g., those on github), we test if they can be applied
as-is to different versions of the software (RQ2).

[11], which provides further details on the vulnerabilities
reported. We leveraged cve-search [12] to obtain a copy
of these online databases to speed up our analyses.

CVEs in NVD contain a number of external references
containing details about the vulnerability. These references
have tags which indicate what kind of material they link to.
One type of reference is a “Patch”. We thus hypothesized that
a CVE, when patched, will contain a link to the patch in its
references. We explore this hypothesis further in §III, where
we discover other sources of patches.

Given such a patch reference in the form of an URL tied
to a CVE, we assess what versions of the software it can
likely be applied to. While the CVEs may provide information
about the vulnerable versions of the software, they do not often
provide us with information about which versions (if any) the
referenced patch can be applied to. As such, we must test this
ourselves. A side-effect of this is that, for our purposes, we
require that both the software and its patch be open-sourced.
We choose this heuristic as there is no general way to easily
test the applicability of blackbox binary updates to previous
versions of the software.

Open-source software is often managed by a version control
system (VCS), which keeps track of changes (termed commits)
made to the codebase (termed a repository) over its lifetime. A
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TABLE I
CVSSV2 METRICS FOR SUBSETS OF THE CVE DATABASE (VALID CVES ONLY). DUE TO RATE-LIMITING FROM NVD, WE ESTIMATE RELEVANCE (i.e.,

% OF CVES THAT REFERENCES A PATCH AND/OR EXPLOIT) BASED ON A RANDOM SAMPLE (10K) OF THE FULL DATABASE.

Ease of Access Relevance
Dataset CVEs Severe No Auth Low Complex Net Patched Exploited Both

Full Database 136k 32.7% 82.0% 54.0% 80.0% 27.4% 23.4% 5.4%
In Time Period 6480 24.2% 80.4% 61.9% 80.3% 28.3% 27.1% 4.5%
With Commit 397 29.7% 89.7% 68.5% 87.7% 96.7% 22.7% 21.4%

VCS enables users to undo commits and revert the repository
to a previous state (i.e., an older version). To test if a patch
applies to a given version of software, we load that version
and see if we can apply the changes specified in the patch.
Most patches are given in the form of a diff, which encodes
information about modified files and specific line changes. If
the file(s) and line(s) referenced in a diff have changed from
those specified, the patch may be unapplicable (e.g., you can’t
modify lines in a file that has since been deleted).

Our patch tester leverages one such version control system,
Git, to test patches. While many other version control systems
exist (e.g.,, Subversion and Mercurial), Git is the most widely
used in open-source software projects [13], [14] and in CVEs
[15]. For Git-backed software, a CVE generally links to
commit(s) on a public Git repository (i.e., URLs of the form
[repo]/commit/[hash]), and the whole set of linked
commits constitutes the patch. We use this information to
download the repository and test the patch.

Given this data, we venture to provide insights on the se-
curity implications of the examined CVEs and corresponding
vendor patches. For part of this assessment, we rely on the
Common Vulnerability Scoring System Version 2 (CVSSv2)
[16].2 In CVSSv2, a score of 7 or above is considered
“high” severity [16], which we use as our baseline for a
“severe” CVE/patch. Additionally, CVSSv2 splits the security
implications into two major categories: how the vulnerability
is accessed, and the theoretical implications of exploiting it.
It further splits each of these into three subcategories. For
access, these are: the authentication level, the complexity of
the access, and the vector through which the vulnerability
can be accessed (e.g., through the network or only locally
on the machine). For impact, the standard security metrics
of availability, confidentiality, and integrity are used. CVSSv2
denotes impact as none, partial, or complete to indicate how
much the metric was compromised.

III. RQ1: WHERE DO ALL THE PATCHES GO?

For our analysis, we examined CVEs during a four month
period covering the most recent CVEs at the time of our ex-
periments. 7254 CVEs were published during the observation
period, of which 774 were eventually rejected by NVD (e.g.,
due to being duplicates), leaving us with 6480 valid CVEs
(1542 of which were rated severe).

2While a newer version 3 has been released, cve-search uses version
2.

TABLE II
BREAKDOWN OF PATCHES FOUND

Version Controlled
Git Commits 397 5.47%
GitHub Pull Requests 84 1.16%
Other 76 1.05%

Unstructured Discussions
Bug Tracker 374 5.16%
Mailing Lists, Forums, etc. 66 0.91%

Update Only
OSS Update 589 8.12%
Binary Update 1176 16.21%

Unclear 233 3.21%
No Patch Found 3485 48.04%
Rejected CVEs 774 10.67%

NVD annotates references with tags describing the link. For
example, a reference may be tagged “Third Party Advisory”,
“Exploit”, or, “Patch”. Out of the valid CVEs within our
timeframe, only 1834 (28.3%) had at least one reference
link tagged as “Patch”. Independently, 397 (5.5%) CVEs
referenced a recognized Git commit and were thus considered
“micropatches” testable by our approach (see Table II).

Not all the CVEs referencing Git commits were tagged as
“Patch”. While this could potentially be due to the commit
being an exploit, or the change which introduced the vulner-
ability, a manual analysis confirmed 18 of the 19 untagged
commits in our test set were patches. The one outlier was
tagged “Release Notes” and was, in fact, release notes — the
commit containing that patch was not included as a reference.
For the other 18, the most common error was for the patch
to be tagged “Third Party Advisory”, though some were left
untagged and 2 were mistakenly tagged “Exploit”.

The small sizes of both the tagged patches and our testable
micropatch subset raised many questions. First, were our test
set, our time frame, and the CVE database at large similar?
Second, why did we find so few patches? Third, was choosing
Git too limiting or was there a larger issue, i.e., are many CVEs
just left unpatched?

To test for measurement bias, we compared the CVSSv2
security metrics along with the patch and exploit statistics3

of our dataset with that of the larger sets. The results of
this is shown in Table I. We found that our test set is
reasonably similar to both the analyzed time frame and the

3What % of the CVEs referenced a tagged patch and exploit, respectively.
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overall database. Looking more closely, we noted that the
CVEs with patches and those with exploits are essentially
disjoint. About one-fourth (27.4%) of the database has patches
and one-fourth (23.4%) has exploits. But, only 5.4% has both.
This suggests that developers’ decision to patch defects
is based primarily on the nature of the codebase and
their particular style rather than security concerns like
the severity and exploitability of the vulnerability.

We also noticed that even though our time frame is recent,
the fraction of patched CVEs matches the full database.
This implies that the patch rate of CVEs does not increase
significantly with time (i.e., a few month old CVE is just as
likely to be patched as a decade old CVE). One possible reason
for this is that many CVEs are published after a responsible
disclosure period wherein the vendors patch the vulnerability
(if they are going to). Previous work studying the lifecycle
of CVEs supports this. For example, Li and Paxson [15]
found 78.8% of vulnerabilities were patched before they were
publicly disclosed and 26.4% of unpatched published CVEs
remained so 30 days after publication.

A. Discovering Untagged Patches

Closer inspection of the listed reference links on NVD gave
us many untagged patches. In particular, we found six sources
that give structured information regarding if a patch exists that
can be automatically scrapped, listed below.

• support.apple.com: Apple policy states that it does not
discuss or confirm vulnerabilities until the necessary
updates are available [17]. Thus, if a support.apple.com
link is present in the CVEs list of references, we can
deduce that the CVE has been patched.

• security-tracker.debian.org/tracker: The Debian Security
Bug Tracker’s website lists the status of the bug (i.e., if it
has been patched and in what versions). By parsing that
information, we can identify if a patch has been released.

• access.redhat.com: RedHat has two sources we can use
to find patches. RedHat Errata entries provide a list of
“Fixes” that link patches to CVEs. RedHat customer
portal reports directly on CVEs, providing a list of
affected products and their versions.

• bugzilla.redhat.com: Each entry tags the bug’s status.
• www.securityfocus.com/bid: Whether a fix is available for

a CVE is noted under the “Solution” header.
• usn.ubuntu.com: If an update is available, there will be

an “Update Instructions” section.
Furthermore, Debian Security Bug Tracker and Bugzilla

provide mechanisms to search entries via CVE ID, so we
can obtain patch information from those two sources even if
links to those platforms are not referenced by NVD. Note
that sources from several prominent vendors (e.g., Microsoft,
Oracle, Adobe, etc.) are not included in the above enumeration
because those vendor’s security updates are usually tagged
as “Patch” on NVD. Leveraging these sources, we were able
to automatically find patches for 1146 more CVEs, thereby
significantly increasing the total number of CVEs with patches
to 2979 — 46.0% of the analyzed time frame.

Unfortunately, evidence suggests that we may be nearing
the upper bound of publicly available patches for CVEs. For
one, in an extensive simulation on vulnerability management
conducted by MITRE (using parameters that appear to be
derived4 from 24 years of data), Moore and Householder
[9] note that “even if the perception of the adequacy of
vulnerability management on the part of the defenders was
near perfect (i.e., if the defender were able to immediately
patch any vulnerabilities they were aware of or could become
aware of), the actual adequacy of vulnerability management
still hovers below 0.5.” This is corroborated by our analysis of
how many new patches were found with the addition of each
new data source. Figure 2 plots the cumulative total number
of CVEs with patches as a function of number of additional
data source referenced. We see that the data increases to an
asymptote at 3016 — 46.5% of the CVEs in the time frame.

Fig. 2. The impact of using additional data sources to derive the number
of CVEs with patches. The data suggests that only around 3000 out of 6480
valid CVEs have patches that exist in the wild.

B. Security Indicators & Patching Behavior

The low rate of CVEs with accessible patches motivated
us to study potential causes for this type of behavior. We
investigated whether the security implications of CVEs affects
patch availability on NVD (explicit or hidden). To this end,
we conduct a χ2 homogeneity test to see if the distributions
of CVEs with listed patches are different from the global
distribution when controlled for various security parameters.

The results are presented in Table III. Overall, we are not
able to find any clear trend from the results. However, a few
data points are worth highlighting: we found that CVEs with
a severe CVSSv2 score were less likely to have listed patches
compared with the global distribution. We also found similar
trends for both confidentiality and integrity impacts, whereby
CVEs that have complete impacts in these areas were less
likely to have listed patches. For access metrics, we were
unable to reject the null hypothesis at p < 0.05 that the vector
of access had any impact on if the CVE was patched. We did
find, however, that CVEs with high access complexity were
more likely to be patched compared the global distribution. We

4See, Allen Householder, Analyzing 24 years of CVD, at https://resources.
sei.cmu.edu/asset files/Presentation/2018 017 001 515355.pdf
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TABLE III
IMPACT OF SECURITY METRICS ON A CVE’S PATCH AVAILABILITY. ⊥,+,

AND − MEANS “NO, POSITIVE, AND NEGATIVE STATISTICALLY
SIGNIFICANT IMPACT” (p < 0.05), WHEN COMPARED TO THE GLOBAL

DISTRIBUTION, RESPECTIVELY.

Metric Value Impact

Severity CVSSv2 Score ≥ 7 −
< 7 ⊥

Ease of Authentication None +
Access Single −

Complexity Low −
Med +
High +

Vector Local ⊥
Network ⊥

Security Availability None −
Impact Partial +

Complete ⊥
Confidentiality None ⊥

Partial ⊥
Complete −

Integrity None +
Partial ⊥

Complete −

do not have firm hypotheses to explain these counter-intuitive
findings, but they do demonstrate that security implications of
CVEs are not correlated with patch availability in the ways
one might expect or hope.

IV. RQ2: IS MICROPATCHING FEASIBLE?

In Git, we can reset a repository to the state it was in at any
given commit, thus each commit can be thought of as a version
of the repository. Git also allows us to apply the changes
specified in a given set of commits (i.e., a patch) to the current
state of the repository through a process called cherry-picking.
To test if a patch is applicable to a version of the codebase,
we reset the codebase to the commit corresponding to that
version and cherry-pick the set of commits corresponding to
the patch. Note that this approach tests applicability at a course
granularity — even if the patch can be applied in Git, it could
still lead to compilation or logical errors. But, this approach
does offer an upper bound to the number of easily applicable
patches there are, and is important for studying the feasibility
of applying existing patches as micropatches.

While we could do this for every commit, repositories
can have hundreds of thousands of commits. Thus, automat-
ically checking if each of these commits is patchable can
be extremely time-consuming. As such, we sought a way
of narrowing down the commits we treat as versions. Git
provides a feature called tags, which allows the user to denote
significant commits with a label. Many open-source projects
use said tags to denote different versions of the software (e.g.,
the Linux GitHub repository [18]). While some libraries do
not use tags for this purpose, we hypothesize that they will
nonetheless generally serve as a good proxy for versions.

A. Analysis

To test the general feasibility of applying identified patches,
we ran the 397 CVEs we found with recognized Git patches
through our patcher. 9 CVEs had two different patches (e.g.,
due to the software being mirrored across different reposito-
ries), making for a total of 406 patches (101 with a severe
rating). These patches were spread across 185 repositories,
some of which have versions dating back to early 2000. Table
IV provides data for 15 of the most patched repositories within
our timeframe.

The “Versions” column gives the total number of tagged
releases within the repository (covering its entire lifetime) and
the average (mean) number of these releases a patch can be
applied to. The “Patches” columns shows the total number
of patches in the test set for each repository and the number
of those patches that were not applicable. For each of these
categories, we also provide, in parentheses, the number of
patches that were classified as severe.

The “Popularity” column lists install statistics for the soft-
ware from Linux and PHP package managers and the number
of stars and forks on the GitHub repository. A dash indicates
that no install data was reported for the software, and a
diamond (�) indicates that the number reported was much
less than the star count, implying that number was likely not
representative of the software’s popularity. For example, C
libraries (e.g., libyang, libpcap) are generally not installed, but
rather downloaded and linked to dependent software.

Lastly, the “Security Implications” summarizes the impact
of the most severe CVE for each repository. A checkmark in
the “Net” column indicates that the vulnerability is exploitable
over the network. For availability, confidentiality, and integrity
columns, the circle indicates how much of that aspect of
security was compromised. A full circle indicates that the
vulnerability completely compromised that aspect, a partial
circle indicates a partial compromise, and an empty circle
represents no compromise.

The table shows, for example, that for SQLite and Word-
Press, we were unable to apply any of the patches for these
libraries. This is due to the fact that all the patches for these
libraries contain extraneous version metadata that changes
every commit. The table also indicates that, for FusionPBX,
we found extraordinarily few versions. This is because it is one
of the libraries that releases new versions very infrequently.
For example, despite very active development over the past
2 years (over 2.6k new commits), it has not released a new
version. We provide a more in-depth discussion of results like
these later in Section IV-B.

We also performed a Latent Dirichlet Allocation (LDA)
topic analysis on the summaries of the accessible CVEs and
found 5 topics that cover a wide range of vulnerabilities.5 The
description and keywords for the topics are given in Table
V. Overall, the data is a representative subset of the full
CVE database as we cannot reject the null hypothesis that the

5We selected the optimal topic number via the elbow method on the
coherence of the LDA topics.
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TABLE IV
STATISTICS FOR 15 OF THE TOP REPOSITORIES

Versions Patches (Severe) Popularity Security Implications
Repository Application (Lang) Total Avg Tested Not App Installs Stars Forks Net Avl Con Int

Linux OS (C) 650 123 59 (31) 3 (1) � 91k 31.7k X  # #

FusionPBX Telephony (Web/PHP) 6 2 33 (3) 19 (1) - 399 429 X    

TCPdump Networking (C) 42 3 22 (0) 12 (0) 2829k 1.3k 564 X G# G# G#

SQLite Database (C) 114 0 13 (13) 13 (3) 600k 413 65 X G# G# G#

libyang YANG Parser (C) 18 12 10 (2) 0 � 199 147 X G# G# G#

VLC Media (C) 50 3 6 (0) 3 (0) 1336k 6.1k 2.3k X G# G# G#

libpcap Networking (C) 45 1 5 (0) 3 (0) � 1.3k 536 X # # G#

WordPress Publishing (Web/PHP) 410 0 5 (2) 5 (2) � 13.8k 8.5k X G# G# G#

Pimcore Publishing (Web/PHP) 113 35 5 (1) 0 290k 1.8k 835 X G# G# G#

Opencast Video (Web/Java) 141 36 5 (1) 0 - 141 118 X G# G# G#

QEMU Emulator (C) 276 117 4 (0) 0 102k 3.6k 2.8k    

HHVM Hack Interpreter (C++) 722 504 4 (4) 0 � 16.5k 2.9k X G# G# G#

WordPress Dev. Publishing (Web/PHP) 410 28 4 (1) 0 - 356 408 X G# G# G#

Python Pillow Imaging (Python/C) 65 4 4 (0) 0 - 7.4k 1.5k X G# G# G#

ImageMagick Imaging (C) 214 35 3 (0) 0 1563k 3.9k 641 X G# G# G#

distribution of “severe” CVEs amongst the 397 tested CVEs
is different from that of the full database at p < 0.05 (done
via a chi-squared test of homogeneity).

Additionally, an analysis of the primary programming lan-
guages in the 185 repositories (see Figure 3) shows a large
variety of languages, providing evidence that our language
agnostic approach to patch testing allowed us to analyze a
much wider subset than a language-specific semantic-aware
approach would have permitted.

TABLE V
DOMINANT TOPICS (WITH CONTRIBUTING KEYWORDS FROM LDA

ANALYSIS) WITHIN THE SUMMARIES OF THE TESTED CVES.

Topic % Keywords

Code Injection 23.43% arbitrary, craft, input, execute
Privelege Management 22.67% user, access, privilege, file
Memory Management 21.41% memory, service, function, leak
Various Binary Exploits 19.90% code execution, stack, issue
Web Traffic Parsing 12.6% request, header, attack, http

Fig. 3. Breakdown of primary programming languages in the analyzed
repositories. Note that 78% of the repositories have a primary language that
makes up greater than 80% of the codebase.

We also measured how far back in time a given patch could
be applied and grouped the data by severity and repository.

The results of this analysis for the 279 applicable patches
can be seen in Figure 4. The mean and standard deviation
was 1.6/2.3 years for all patches and 1.3/2.0 years for severe
patches. When grouped by repository, the mean and standard
deviation was 1.8/2.5 years and 1.5/2.3 years for all and severe
patches, respectively.

Summary of Findings: Among the 406 patches, about
two-thirds (279 total; 78 severe) can be applied to at least one
version of the repository. This is positive news, indicating the
feasibility of this direction of research. On average, a patch
can be applied to 34 versions of a repository with a standard
deviation of 1.3. The other 127 patches (23 severe) could not
be applied to any version. Similarly, about one-third (60) of
the 185 tested repositories contained at least one unapplicable
patch. Next, we take a closer look at these failures.

B. Understanding Why Patching Fails

The 127 patches that could not be applied to any version fell
into 6 categories (see Table VI). In what follows, we examine
four major points of failures.

TABLE VI
SUMMARY OF PATCH CATEGORIES

Security Implications
Category Patches (Severe) Net Avl Con Int

Ill-formed 11 (3) X  G# G#

No Tags 10 (5) X    

Alpha Patch 3 (1) X    

Not Yet Released 29 (2) X    

Multiple Commits 20 (6) X  G# G#

General Conflicts 54 (6) X    

Unapplicable 127 (23) X    

Applicable 279 (78) X    

The first issue was that some patches were ill-formed.
Attempting to cherry-pick the commit referenced in the patch
was unsuccessful as the version control system deemed the
commit invalid. The second complication was that some
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Fig. 4. Backward Compatibility of Patches

Fig. 5. Timeline of the commits and releases of the top repositories.

repositories contained insufficient version information. For
instance, some repositories simply do not mark versions at
all or use branches instead of tags. Other repositories release
versions infrequently or have just begun tagging them. Patches
in the “Alpha Patch” category were made before versions
of the software were tagged (i.e., they were made when the
library was in “alpha” state before official releases). Thus,
changes between the patch and first formal release made
these impossible to apply. Patches in the “Not Yet Released”
category were made after the most recent released version and
thus do not have a release containing them. Thus, changes
between the last tagged version and the patch made these
impossible to apply.

To illustrate these issues, Figure 5 depicts the commits
and releases of the 15 repositories in Table IV. Notice that,
for example, despite active development, FusionPBX has not
released a new version in about 2 years. Hence, it is very
unlikely that a new patch will apply to any version of the
software (especially considering the average number of years
back a patch applies is 1.6). Situations like these explain
why “Not Yet Released” patches is the predominant source

of failure for the patch tester.

The third problem was patches with multiple commits.
While Git does allow cherry-picking multiple commits at once,
it has a number of restrictions on what kinds of commits can
be applied simultaneously. For example, one can not cherry-
pick both a merge and regular commit. These limitations are
often too restrictive and make it impossible to apply a patch.

Another point of failure was with the patches themselves.
Some patches contained extraneous changes in addition to the
main security patch. Changes to metadata such as comments,
change logs, or tests produced conflicts that made it impossible
to apply the patch. For example, WordPress has a file with a
version string that changes each build and SQLite keeps a
manifest file in its repository containing hashes of each file,
thus every commit changes these files and produces conflicts.
Other patches were modified before the next release (e.g., to
fix a bug in the original patch, or better incorporate it into the
structure of the codebase). Patches were also incorporated into
major and minor version releases rather than being released
independently as a fix. All of this served to make these patches
unapplicable to both previous and subsequent versions.
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V. EXPANDING THE HUNT

Despite the promising success rate of direct applicability, it’s
important to keep in mind that only a small amount of CVEs
had patches accessible to our tester. We therefore attempted to
expand the set in two ways: by testing links to pull requests
and searching for commits within the unstructured references.
We also present some preliminary work in fabricating mi-
cropatches by obtaining the vulnerable and then the subsequent
fixed version of the codebase to create a diff.

A. Pull Requests

Version control services (e.g., GitHub, GitLab) provide a
formal way of asking developers to merge changes into the
main repository. The patch developer forks the stock reposi-
tory, makes the necessary changes to the fork, and then creates
a pull request that asks the owners of the repository to merge
the changes from the fork. The developers can then approve
the pull request, and the VCS will automatically perform the
merge required to incorporate the given changes.

Given that understanding, we searched the valid CVEs in
our time frame for references to GitHub pull requests and
found 87 CVEs that listed such a link. We modified our patch
tester to run on these links by leveraging GitHub’s API to
analyze the pull request and extract the commits contained
within them. We excluded the 10 CVEs with closed pull
requests, as that means the developer rejected the changes and
therefore the patch may be invalid (or, alternatively, as we
sometimes observed, the developer just does not care enough
to incorporate the patch).

Of the 77 remaining CVEs, 67 were new – the other 10
were also in the initial test set (i.e., they also contained direct
references to commits). The 67 CVEs had 67 patches, of
which 41 were applicable and 26 where not. In the initial
approach, the predominant issue with patches was the patches
themselves (e.g., the patch was modified or incorporated
extraneous changes). However, in this analysis, 23 of the 26
unapplicable patches were the result of metadata errors.

In summary, pull requests are more likely to contain patches
which, if valid, are applicable. This makes sense, as pull
requests are generally focused on a particular type of change
that the requester wants merged, whereas commits made
haphazardly to the main repository may combine many types
of changes. This is one reason why forcing all development on
a project to occur through pull requests is now considered best
practice for Git — what is known as pull-based development
or the fork and pull model [19].

B. Links within References

Table II showed that 6% of the patches have links to
unstructured discussion forums (e.g., bug trackers and mailing
lists). Such forums could contain links to the commit(s)
constituting the patch nested somewhere within them. To
attempt to capture some of these patches in our analysis, we
developed an extension that looks for links to commits within
the references listed on NVD.

This search found 103 Git patches for 103 new CVEs. Of
these, 62 were applicable. Of the 41 unapplicable patches,
27 were due to invalid commits. The high quantity of invalid
commits leads us to believe that there may not be a strong
connection between the links we found and actual patches
for the CVE. Such references could easily be to the commit
that introduced the bug rather than the one that fixed it or to
a potential idea for a patch that was later discarded. This is
compounded by the fact our search found a lot of non-commit
links (e.g., links to the main branch of a repository), demon-
strating that users do, in fact, include version control system
links to things other than patches within these references.

C. Source Code for Version Updates

Lastly, we explored obtaining the source code for vulnerable
and patched versions of the software, and constructing a patch
by calculating the cumulative diff between these versions.

Fig. 6. Extract the entry by querying the CVE ID, retrieve the affected and
fixed versions (underlined in red), and retrieve the source code via links within
the web page (highlighted in blue).

We note that while recent work by Dong et al. [20] provided
an impressive machine learning approach to extract vulnerable
software versions from unstructured texts, we leverage existing
structure to circumvent the need for such heavy machinery.
Specifically, we focused on the Debian Security Bug Tracker
because it has several desirable traits: (i) Unlike other security
trackers, the Debian Security Tracker exists within the Debian
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eco-system and is crucially linked to codebases maintained
by Debian. (ii) Debian Security Trackers presents vulnerable
/ fixed versions as structured first-class data within their web
UI, allowing for easy access both by human and machines.

Specifically, we obtain the affected version by using a regu-
lar expression that recognizes semantic version numbers [21]
and extracts all such numbers mentioned in the description
of the CVE.6 This set of candidate affected versions is noisy,
as the CVE description could contain versions for different
affected softwares or use a versioning system different from
the semantic versions used by Debian, or even reference the
fixed versions [20]. We filter this set of candidates by taking
only versions that precede those marked as “fixed” by De-
bian. A link to the affected program’s version control system
(Debian’s GitLab Server, salsa.debian.org) can be obtained by
the process shown in Figure 6. Both the affected and fixed
versions are tags for the Git Repository, which allows us to
obtain source code differences that contain the security patch.

We believe that performing the cross-reference is sufficient
to ensure accuracy for two reasons. Firstly, Debian is the
primary source for their version of the software, and is more
trustworthy than other sources that simply aggregate security
information (e.g.,, NVD). Secondly, Dong et al. [20] showed
that while most websites fail to maintain a complete list of
vulnerable versions, in over 80% of the cases, the list they do
maintain is correct but incomplete. This is not a problem for
us, because all we need is a single vulnerable version.

Through this method, we were able to find accessible source
code patches for 135 new CVEs, including ones that did
not list any patches at all on NVD. While this method is
significantly more crude than the other two in that it does not
point to a commit that fixes the issue, it is an exploratory step
that can be improved in the future. For example, we could scan
through and analyze all the commits between the two tags to
find those we recognize as security fixes (e.g., by a reference
to an issue or to a CVE ID).

VI. RQ3: INCENTIVES FOR SECRET PATCHES?

Even after our extensive efforts, we were not widely suc-
cessful in finding bug fixes. To us, it was baffling that there
was a deluge of vulnerabilities being disclosed, yet a lack of
available patches. Given the rapid increase in the number of
disclosed vulnerabilities in the past few years, coupled with the
potential for economic damages to end users, one would expect
that understanding the factors that contribute to the timing of
vendors’ release of patches would be a top priority. Indeed,
reflecting on the findings from our study, it begs the question:
why are patches not more readily available? From what we
discovered, the reasons are complex, and several factors appear
to influence whether vendors make patches available.

The most obvious factor is that getting a fix out can be
time consuming, especially in large code bases. The patches
themselves must be subject to the same development, design,
and complexity challenges as any other piece of software. The

6The descriptions on the Debian Security Bug Tracker mirrors NVD’s.

fix may not be easy, and developers need to ensure that patches
do not cause software regression (e.g., performance degrada-
tion or instability), or worse, introduce new vulnerabilities.
More subtle is the fact that market forces appear to be at play.
For example, Arora et al. [22] showed that market size has
a crucial role on a vendor’s patching behavior. Interestingly,
concentration in many software markets, indirect competition
and threat of disclosure from vendors in complementary
markets, can help reduce patching times almost as much as
increases in the number of direct competitors. Jo [23] also
found that even when software is provided “free of charge” to
users (as in the browser space), companies still have incentives
to fix known flaws even in the absence of direct competitors
because they derive their revenues from neighboring markets
(e.g., from advertisers or firms that that buy usage traffic).

Conversely, the lack of competition has an adverse impact
on not only developers’ motivation to write secure code but
also the way vendors respond to vulnerabilities discovered in
their products [22]. This is likely due to the fact that in soft-
ware market segments with a dominant vendor, software users
have weak bargaining power resulting in minimal influence on
a vendor’s patch release behavior.

To complicate matters even further, perverse incentives can
directly impact the release of patches. On one hand, the
world of hacking can be viewed as a market: buyers seek
the best price and sellers try to make the most profit from
their discoveries [24], [25]. Arguably, the presence of markets
can make activities more efficient, regardless of whether the
activities it supports are laudable or not. Take, for instance,
bug bounty and vulnerability reward markets. Even if we
ignore the ethical concerns associated with such markets, the
fact that these markets are unregulated can lead to problems
that can not be overlooked. These markets provide financial
incentives to individuals and organizations to discover and sell
vulnerabilities, which result in more discovered vulnerabilities.
That in itself is not problematic as it may motivate software
developers to come up with relevant patches, and it also helps
alert users about vulnerable software. But, the discovery and
disclosure of vulnerabilities can directly translate into more
attacks against vulnerable systems, and the time to appearance
of exploits is shortening [26], [27]. Furthermore, data show
that the volume of disclosed vulnerabilities has skyrocketed
in recent years (see Figure 7), likely due to advances in both
technology (e.g., fuzzing) and market incentives. The deluge
has overloaded the current infrastructure, leading to worse data
quality and a smaller number of publicly available patches. So
we ask, if a large fraction of patches are not readily avail-
able, do vulnerability disclosures really improve the state of
cybersecurity when published vulnerabilities without patches
get quickly exploited [28]?

In pursuit of that exact question, we realized that the
wide gap between the number of disclosed vulnerabilities and
available patches has not gone unnoticed. Of late, several
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Fig. 7. NVD data throughput between 2000-2020.

commercial security vendors7 offer services that attempt to fill
the void, claiming to keep their customers’ software manifests
up to date even when patches for known vulnerabilities are
not available on disclosure portals like NVD. But this is
a slippery slope, as it could be financially rewarding to
spend effort hunting for — and subsequently announcing —
vulnerabilities in open source software, yet keeping patches
private, only to have users of those affected packages pay a
premium to stay up-to-date. Such tactics are not uncommon
with vulnerability discoverers who seek rewards for their
capabilities. For instance, in a study conducted by Algarni and
Malaiya [29] of the most successful vulnerability discoverers,
one top discoverer exclaimed that “the main reason he became
a vulnerability discoverer is that it made his own website
more popular and enabled him to offer a source code review
service,” while another declared “he believes that the most
profitable option for a vulnerability discoverer like him is to
offer software security auditing services.”

Lastly, even with renewed calls for stricter software security
policy [30] and sanctions [31], vendors may still not have
enough incentive to invest the time and effort to release
patches. While multiple studies have shown that the announce-
ment that a company experienced a security breach has a
negative impact on its stock price, the long-term effects are
less clear [32]–[34], but shows signs of being on the decline.
In particular, Gordon et al. [35] suggest that “there seems to be
a shift in attitude among investors toward viewing information
security breaches as creating a corporate nuisance rather than
creating a potentially serious economic threat to the survival
of firms.” Moreover, the software that enabled the breach is
rarely at the forefront of news stories, and so in the absence
of a strong disapproval from investors, software producers are
more likely to continue doing business as usual.

Takeaway: Both the emergence of a private vulnerability
market place and the lack of incentive to publish patches
are troubling trends. Although it is not entirely clear how to
resolve the issue completely, it is clear from the data that
current initiatives (e.g., those run by MITRE) are ill-equipped
to deal with the situation (see Figure 7). Moving forward, new

7See, for example, The State of Open Source Security Report by Snyk and
2020 Open Source Security and Risk Analysis (OSSRA) Report by Synopsys

efforts are called for that make the release of patches a first-
class priority on par with vulnerabilities.

VII. RELATED WORK

Patch behavior: Conventional wisdom suggests that users
tend to delay software updates for fear of workflow disruption:
an update might force them to learn new methods of com-
pleting tasks they had already mastered [36]–[41]. Generally
speaking, because users are not provided with enough infor-
mation to make informed decisions about whether to upgrade,
the perceived marginal costs are high. Bergman and Whittaker
[39] argued that postponing updates is rational because users
must make decisions in the absence of critical information
about hypothetical benefits, which is hard to do without actual
experience of the new features.

Users also learn from negative experiences and delay
patches even if the risks of not patching might be high [4], [5],
[38]–[40], [42]. On the other hand, frequent patching may not
protect a user from attacks if new vulnerabilities are frequently
introduced into the codebase [43]. The frequency of updates
can also impact adoption rate. Indeed, users rarely update
within the first month of a patch’s release and widespread
adoption takes much longer [43], [44]. The tale for expert users
is not much different; they only install updates 1.5 times more
often than non-experts [45], and even system administrators
routinely evaluate the pros and cons before apprehensively
deciding to apply patches [46].

Patch analysis: Over the past decade, there has been an
abundance of research on categorizing patches to investigate
trends [47], [48], find similarities between patched code [45],
examine whether a patch fixes a bug or offers an enhancement
[15], [49]–[53], and determine whether a patch is in fact safe
to apply [8]. Like us, many of these works only use the
information provided by the patch itself for categorization and
do not delve into semantics.

That said, this information (e.g., commit diffs) generally
lacks the expressiveness required to reason meaningfully about
the nature of the patch [54]–[56]. Thus, several approaches
augment patch analysis with static analysis or symbolic ex-
ecution of the code (e.g., [57]–[63]). Unfortunately, these
techniques suffer from scalability issues and often restrict
the analysis to a small set of programming languages or
types of changes. We forego the application of more in-depth
approaches as our goal is not to analyze the nature of the
patch, but only to test if it can be applied.

Automatic patching: Recent research has studied methods
of automatically updating software libraries. Specifically, OSS-
Patcher [7] attempts to apply patches for Android applications
at runtime without involving developers. OSSPatcher takes a
source code patch of an open-source library and generates
a binary patch which can be applied at run-time via static
analysis and reverse engineered build configurations.

While the technique used by OSSPatcher can be successful
in applying hot fixes, it has practical limitations. First, the
use of static analysis constrains evaluation to a small subset
of languages (e.g., C/C++, Java) and second, the build stage
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constrains the technique to a small set of environments. Lastly,
to make the approach scalable, simplifying assumptions must
be made, further constraining which types of patches can be
analyzed (e.g., not supporting patches that modify types, but
only those which add or remove them). In contrast, we avoid
such limiting assumptions by studying the problem of how
many patches can be applied verbatim at the source code level.

VIII. CONCLUSION & FUTURE WORK

We performed a large-scale feasibility analysis of the mi-
cropatching space and discovered that the manner in which
patches are released leaves much to be desired. On the
National Vulnerability Database, the gold standard of vul-
nerability disclosure, only one-fourth of the vulnerabilities
are reported patched. On the bright side, this deficit can be
improved somewhat by finding “secret patches” not reported
on NVD but discoverable through other bug trackers, with the
number of patched vulnerabilities likely plateauing at about
50%. Unfortunately, the patches themselves are often disclosed
in a manner that is not machine accessible and many supposed
patches are just software updates.

However, of the less than 10% of vulnerabilities with
extractable source code patches, about two-thirds of these
patches can be readily applied with standard VCS tooling.
Furthermore, the other one-third failed primarily due to the
nature of the patch —- developers often bundle security fixes
with other major changes. This makes them unamendable to
micropatching and means applications may not be able to
incorporate them. Thus, if more of these patches were true
micropatches, the number of applicable patches would likely
be much higher. This further demonstrates that the major
threat to the feasibility of micropatching is not the difficulty in
applying and verifying patches, but rather the lack of available
micropatches. We also discovered that core software libraries
often release new versions infrequently, meaning patches are
rarely timely. Thus, infrastructure that relies on specific stock
versions of libraries will often continue to suffer from severe
vulnerabilities even when (and if) they are reported patched.

Digging deeper, we discovered that the security industry
has a strong incentive to publicize vulnerabilities, but little
incentive to construct or publicize micropatches for them.
We hope our discoveries highlight some important contextual
issues within the area of automated patching, and spur the
development of better practices when it comes to the creation
and reporting of security patches.

Moving forward, we recommend that practitioners explore
opportunities for autonomous cyber reasoning systems that
incorporate techniques for accurately identifying source code
changes that actually represent security patches. One intriguing
direction is to systematically monitor source code repositories
to detect silent fixes [1], [64], [65] or secret patches that
vendors address without creating CVE entries or explicitly
labeling the corresponding modifications in change logs [66],
[67]. The main challenge is how to reliably relate vulnerability
reports with the code changes in the vendors’ repositories that
provide the fix — and to do so at scale.
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A language-agnostic semantic diff tool for imperative programs,” in
International Conference on Computer Aided Verification, 2012, pp.
712–717.

[54] G. Bavota, “Mining unstructured data in software repositories: Current
and future trends,” in International Conference on Software Analysis,
Evolution, and Reengineering, vol. 5, 2016, pp. 1–12.

[55] E. A. Santos and A. Hindle, “Judging a commit by its cover,” in
Workshop on Mining Software Repositories, vol. 16, 2016, pp. 504–507.

[56] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” IEEE International Conference
on Software Maintenance and Evolution, pp. 271–280, 2014.

[57] D. Binkley, “Using semantic differencing to reduce the cost of regression
testing,” in Conference on Software Maintenance, vol. 92, 1992, pp. 41–
50.

[58] D. Binkley, R. Capellini, L. R. Raszewski, and C. Smith, “An imple-
mentation of and experiment with semantic differencing,” in Conference
on Software Maintenance, 2001, pp. 82–91.

[59] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare, “Differential static
analysis: opportunities, applications, and challenges,” in Workshop on
Future of Software Engineering Research, 2010, pp. 201–204.

[60] P. D. Marinescu and C. Cadar, “Katch: high-coverage testing of software
patches,” in Joint Meeting on Foundations of Software Engineering,
2013, pp. 235–245.

[61] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Conference on Automated software engineering, 2010, pp.
33–42.

[62] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu, “Differ-
ential symbolic execution,” in Symposium on Foundations of software
engineering, 2008, pp. 226–237.

[63] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: preliminary assessment,” in 2011 33rd International Conference on
Software Engineering, 2011, pp. 1066–1071.

[64] M. Yang, J. Wu, S. Ji, T. Luo, and Y. Wu, “Pre-patch: Find hidden threats
in open software based on machine learning method,” in SERVICES,
2018.

[65] T. Ji, Y. Wu, C. Wang, X. Zhang, and Z. Wang, “The coming era of
alphahacking?: A survey of automatic software vulnerability detection,
exploitation and patching techniques,” in Conference on Data Science
in Cyberspace, 2018, pp. 53–60.

[66] M. Sun, W. Wang, H. Feng, H. Sun, and Y. Zhang, “Identify vulnera-
bility fix commits automatically using hierarchical attention network,”
Endorsed Transactions on Security and Safety, 5 2020.

[67] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting” 0-day”
vulnerability: An empirical study of secret security patch in oss,” in
International Conference on Dependable Systems and Networks, 2019,
pp. 485–492.

405

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 12,2022 at 16:18:50 UTC from IEEE Xplore.  Restrictions apply. 


		2021-05-23T15:20:52-0400
	Preflight Ticket Signature




