
An Online Gamified Learning Platform
for Teaching Cybersecurity and More

Mac Malone
tydeu@cs.unc.edu
UNC Chapel Hill

North Carolina, USA

Yicheng Wang
yicheng@cs.unc.edu
UNC Chapel Hill

North Carolina, USA

Fabian Monrose
fabian@cs.unc.edu
UNC Chapel Hill

North Carolina, USA

Abstract

We present an online gamified learning platform for computer sci-
ence and cybersecurity education. Exercises within the platform
revolve around a custom game wherein students can demonstrate
learned skills regarding password security, web security, traffic
analysis, reverse engineering, cryptanalysis, and much more. We
describe some key features that together make our platform novel,
including its distributed infrastructure, game engine, integrated de-
velopment environment, automated feedback system, and support
for individualization. We demonstrate how these features assist in
the learning process — both in theory and in practice — and report
on the use of the platform in a cybersecurity course.

CCS Concepts

• Security and privacy; • Applied computing → Interactive
learning environments; Distance learning;

Keywords

Learning Platform; Gamification; Cybersecurity; Distance Learning
ACM Reference Format:
MacMalone, YichengWang, and Fabian Monrose. 2021. An Online Gamified
Learning Platform for Teaching Cybersecurity and More. In Proceedings of
the 22nd Annual Conference on Information Technology Education USB Stick
(SIGITE ’21), October 6–9, 2021, SnowBird, UT, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3450329.3476859

1 Introduction

Given our increasing reliance on cyberspace for nearly every aspect
of our personal lives, building safe and secure digital ecosystems is
critical. Unfortunately, even as cyberspace continues to transform
the way we live, many vulnerabilities in critical infrastructure are
left unchecked, exposing us to amyriad of threats. Today, cybersecu-
rity attacks and breaches are an all too familiar events, underscoring
the need for better defenses.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8355-4/21/10. . . $15.00
https://doi.org/10.1145/3450329.3476859

Sadly, the reality is that we still lack a cyber-savvy work force
that can help defend against even known systemic risks. Training
the next generation of cybersecurity experts requires teaching to-
day’s students hands-on skills. Indeed, Mason et al. [11] may have
put it best: “educating a cybersecurity professional is similar to
training a pilot, an athlete or a doctor. Time spent on the task for
which the person is being prepared is critical for success." (Emphasis
added.) However, the success of such education depends heavily on
how interesting the exercises are [4]. Those who are not sufficiently
motivated to learn new concepts or apply them on their own will
gain less. Finally, recent world events have created yet another
challenge for educational platforms beyond engagement – they
need to be easily transitioned to a remote-learning environment.

Thus, in developing our cybersecurity curriculum, we had three
goals in mind: (1) provide students with a hands-on cybersecurity
education that ensures understanding of the tools and techniques
needed to tackle everyday problems, (2) make the exercises inter-
esting, thereby promoting self-study, peer instruction, and overall
engagement, and (3) support distance learning.

To provide students with hands-on learning, one can leverage
student-centered and challenge-based learning (CBL) techniques [14].
In student-centered approaches, learners are challenged to draw
on prior learning, acquire new knowledge, work as a team, and use
their creativity to arrive at solutions as part of an active learning
exercise. In CBL, learners participate in some form of competition
and typically learn more quickly as they are often motivated by the
common goal of potentially winning a prize.

To make exercises interesting, one can transform them into
games. Gamification increases motivation by providing students
with clear, achievable goals and by making learning more fun, es-
pecially when competition is encouraged [12]. However, some crit-
icize gamification as overly focussed on the provision of extrinsic
rewards, possibly damaging intrinsic motivation for learning [9].
Nevertheless, the findings of Hamari et al. [8] and Bai et al. [1]
are encouraging and indicate that gamification can be a winning
strategy for both learning outcomes and engagement.

This is especially true in cybersecurity, where gamification of-
ten takes the form of “capture-the-flag” competitions (CTFs) or
wargames [3, 16]. In a CTF, players are tasked with finding a string,
called a flag, hidden within some system and must leverage cyber-
security techniques to discover it. In a wargame, players compete
with one another to compromise some vulnerable system and who-
ever completes the objective first wins. While such activities can
be engaging, they lack many features of a real game and are largely
just cybersecurity exercises with added competitive aspects. This
means they also lack many of the facets that make games so apt
for cybersecurity education [17].

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

29

https://doi.org/10.1145/3450329.3476859
https://doi.org/10.1145/3450329.3476859

Seeking to improve upon existing methods for our goals, we
created our own platform – Riposte. Riposte combines a number of
industry and educational best practices into a novel package, and
offers several contributions, including: (i) a distributed infrastruc-
ture that supports a large scale and rapid updates, (ii) a core game
that students can interact with via both an UI and an API, (iii) a
built-in integrated development environment (Jupyter Notebook)
that allows students to begin developing right away with no ma-
chine setup or configuration, (iv) a thorough guide that provide
explanations and hints about the task at hand (v) an advanced
auto-grader that provided automated feedback about a students’
performance and even give personalized hints for common mis-
takes. (vi) individualized assignments wrapped up in a gamified
UI (e.g., with trophies, a leaderboard, etc.) that allow for targeted
student-centered educational approaches (e.g., promoting student
growth) while help to prevent academic dishonesty. We discuss
each of these in the following sections.

2 Design Overview

Riposte is a learning platform designed for gamified cybersecurity
education. In what follows, we discuss the design and merits of the
platform from both technical and educational perspectives.

Technical Design
We leverage a modular design that allows for the easy selection and
presentation of disjoint services (henceforth referred to as “mod-
ules”’). The modules include a ➀ Missions module that allows
students to track their progress throughout the assignment; a ➁

Code module that provides students with a Jupyter Notebooks
to develop Python online to complete the assignment a ➂ Game
module with a 2D shoot ’em up style game that contains a variety of
challenges that teach various cybersecurity concepts; a ➃ Leader-
board module that ranks students according to their achievements
within the platform; and a ➄ Guide module that assists students in
navigating the interface and progressing through the assignment.

Figure 1: A collage of the modules of Riposte: (1) missions, (2) code,
(3) game, (4) leaderboard, (5) guide.

Students access Riposte through a single login portal that sup-
ports both custom login credentials and federated authentication
(e.g., with Google Account Services). Once logged in, the web client
connects with the endpoint(s) assigned to the student. Each student

is assigned their own VM which contains their instances of rele-
vant modules (i.e., the game, Jupyter Notebook, etc.). These modules
and Riposte as a whole are deployed through Docker containers,
enabling fast setup and easy scalability. To add a new student ma-
chine, we provision a new VM, register the endpoint with the main
Riposte server (through its RESTful API), and boot up the Docker
containers. Riposte also supports a continuous integration / contin-
uous deployment (CI/CD) pipeline that allows us to quickly update
and adapt the platform as a semester progresses.

Student B’s Riposte Web Client

Student B’s Riposte VM

Resource Monitor

Jupyter Notebook Server

Web App

Jupyter Notebook

Game Server

External Logging Service

Anomaly Detection

Main Riposte Server

Student A’s Riposte Web Client

Student A’s Riposte VM

Web App

Jupyter Notebook

Game ClientGame Client

Main Game Server

Notebook Grading Server

Web Server

Resource Monitor

Jupyter Notebook Server

Game Server

Figure 2:Overview of the architecture.The bolded services are runwithin
isolated Docker containers. Arrows represent communications be-
tween services. Red solid ones are those that the students canmonitor
and are encouraged to explore and exploit, Yellow solid ones can
technically be seen but are not the focus, and gray dashed ones are
invisible to students.

The containerization also isolates the students’ environments
from one another. This is especially important in the context of
cybersecurity education, as having hands-on experience with of-
fensive security in a risk-free environment is paramount. However,
there still remains the potential for students to break their own
machines. To help mitigate this, we set up services that run both
inside and outside of the docker container to immediately restart
the modules should they crash. In addition, Riposte keeps detailed
logs of its activity and forwards them to a logging service to allow
diagnosis of complicated failures. These logs also serve as another
way to keep tabs on students, being used both to track their perfor-
mance and to detect suspicious activities (e.g., potential malicious
cyber attacks and/or academic dishonesty).

Educational Design
In his seminal work on principles of instructional design [6, 7],
Gagne et al. outlined nine steps of the learning process that all
learning system should incorporate [5]. They are 1) Gain the at-
tention of the learner. 2) Inform the learner of the objectives.
3) Stimulate the recall of prerequisite learning. 4) Present the
educational material. 5) Provide learning guidance. 6) Elicit per-
formance. 7) Provide feedback about the performance. 8) Assess
performance. 9) Enhance retention and transfer.

Our goal is to support each step and facilitate learning. Step 1 is
about motivating students to engage with the learning process.
This is where gamification comes in. Step 2 is the the domain

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

30

of the Missions module: assignments and learning objectives are
disseminated in a gamified form to students, leveraging the gaming
notion of trophies (achievements) to denote concrete tasks. Step 3
is accomplished through “Field Exercises", which are special pre-
assignment exercises designed to test students on their prerequisite
knowledge. These low stakes pretests verify if learners have the
necessary background knowledge for upcoming assignments, and,
in the case of the first exercise, whether or not the course is right for
them. To motivate students to complete the exercise but not panic
over it, doing sufficiently well on the field exercise rewards students
with a minimum passing grade on the upcoming assignment, but
failing the exercise has no negative grade consequences.

As we utilize Riposte within an existing academic course, Steps
4-5 are mainly provided through the course itself (e.g., via lectures,
office hours, etc.) rather than Riposte. However, we still augment
this with the Guide module – the guide progresses through step-by-
step instructions as students complete tasks and can even provide
hints if the system detects that a learner is getting lost. We created
a fully integrated tutorial on the functionalities of the Riposte plat-
form within the guide that can can be completed by the students
on their own. Thus, Riposte can support being used as a completely
standalone learning platform without an academic course backing
it. Steps 6-8 are handled through a combination of the Game, Code,
and Missions modules that we will delve into deeper in §3 - §5.

A common challenge that arises with Step 8 of the learning
process is striking a balance between assessing a student’s growth
versus their proficiency at a set of tasks. Ideally, education grows
a student to a requisite knowledge of proficiency in a field, but
this is hardly universal. Assignments are generally graded based
on whether or not students completed certain learning objectives.
That is, it measures whether they are proficient in a task). However,
different students may need very different amounts of growth to
achieve such a level of proficiency. The same task can require only
a small improvement from one student, but a vast jump for another.
If the latter does improve (and even potentially improve more, in
relative terms, than the other student), but not enough to fully reach
proficiency, they will still be ranked low and graded harshly under
a pure proficiency model. This can discourage them and turn them
away, despite their promising learning potential, because the fruits
of their labor were not rewarded. Individualizing assignments can
help with this (and more) and is the focus of §6.

Finally, Step 9 concerns retaining what is learned and trans-
ferring it to real world situations. We do this by designing our
assignments in a cumulative manner, making sure relevant con-
cepts are continually repeated and built upon in order to assist
retention. We also try to make real world connections in each of
our assignments and developed the Riposte learning platform to
closely mirror aspects of real world tools and techniques. Some
examples of these assignments will be presented in §7.

3 Game Engine

Riposte, as a gamified learning environment, contains a 2D shoot
’em up game at its core. The core gameplay loop involves con-
trolling an avatar that can move around a 2D game board and fire
projectiles to complete specific objectives. Hacking the game allows

student to augment their avatar with more advance capabilities
such as teleporting, moving through walls, and laying mines. The
game supports both player versus player (PvP) and player versus
environment (PvE) game modes, and also supports team play in
both modes. In PvP, the goal is reduce the opposing players’ (or the
opposing teams’) life total to zero. In PvE, players face off against a
variety of AI challenges with differing goals: solving puzzles, nav-
igating mazes, defeating bosses, surviving waves of enemies, etc.
The challenges themselves can be locked behind various authenti-
cation mechanisms such as vulnerable cryptographic ciphers that
players may need to exploit.

Thus, despite its presentation as an ordinary game, it can be used
as a vector to teach a wide range of computer programming and
computer security concepts. For example, learners log into into the
game using a separate set of credentials from the main Riposte por-
tal, which forms the basis for an online password cracking exercise
where students have to crack the instructor’s passwords and defeat
them at PvP. We also taught various cryptanalysis techniques (such
as CBC byte flipping) by having students forge challenge unlock
codes. In addition, the communication protocol of game is similar
to that of many common web apps (JSON encoded messages over a
WebSocket connection to perform remote procedure calls). There-
fore, by teaching students how to hack the game, they get hands-on
experience with real-world technologies while learning the basics
of threat analysis and reverse engineering.

The game is modular in that challenges and game modes are
heavily encapsulated, which makes customization straight forward.
Anticipating the flexibility needed for making changes to the plat-
form to adjust our lessons each semester, we took special care to
make it easy to design new challenges and enemy AIs. In develop-
ing the challenges, we also looked for ways to measure varying
levels of skill — i.e., different challenges need to enable and disable
different kinds of exploits to accurately assess the specific learning
objective. For example, a common exploit used in many challenges
allows a player to teleport freely around the board. However, we
disable this exploit in assignments where the learning objective
demands that the students develop step-by-step maze-solving al-
gorithms, keeping the completion of the assignment in-line with
achieving the learning objective. Riposte supports this flexibility
via per-challenge configurations. An example of how the API is
used can be seen in Figure 3.

The distributed design of Riposte also factors into game. In our
setup, each student connects to their own instance of the game
server hosted in a restricted section of their VM (known as the
satellite server). This allows us to design assignments that require
interaction with the game server binary and prevents students from
interfering with others’ games. At the same time, we want to sup-
port teamwork and a communal leaderboard, so a main server exists
which manages the shared state of the satellite servers. Results from
games played on each satellite are communicated securely to the
main server, and each satellite can query the main server for in-
formation about other satellites, allowing for team play. In a team
play session, one student hosts the game on their server and every
other player joins that game through an in-game lobby interface.
The other players’ clients know who to connect to by query the
main server and the host’s server can verify those players’ logins
by querying the main server as well.

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

31

Figure 3: Code for an example challenge, Heist, that demonstrates
the challenge creation API. Heist has three phases: (1) solve amaze to
find the gold, (2) defeat the adversaries that appear when collecting
it, and (3) solve another maze to escape. Players don’t know about
these phases initially and are tasked with completing the challenge
in the fewest attempts possible.

4 Web-based Development Environment

Hands-on learning in computer science demands coding. While
students could code on their own machines, doing so has disad-
vantages. For one, it assumes that learners already know how to
properly setup andmanage their development environments, which
is not always the case. This is especially true in computer security,
where topics like binary reverse engineering and traffic analysis
can require students to setup and run VMs and complex software.
Much of the common tooling is written in low-level languages and
is frequently complex enough that even experienced computer sci-
entists outside the domain have a hard time managing it. As such,
although setting up and managing a development environment is
an arguably essential skill for cybersecurity practitioners to learn,
it is often beyond the scope of an introductory course.

To minimize frustration and lower the barriers to entry, we inte-
grated the necessary development environment tools into Riposte
in a manner that required little to no setup on the part of the stu-
dent. A key advantage of this integration is that it allows us to
track student interactions with the tools and use this information
to advance the learning process. It also allowed us to more eas-
ily combine the development environment with other elements of
Riposte (e.g., Missions, Leaderboard, Game, and Guide modules).

Specifically, we used the Chrome Developer Tools to teach stu-
dents how to perform traffic analysis, reverse engineer websites,
and alter the game client. While the use of browser developer tools
might not be appropriate for an advanced security course — where
hands-on experience with lower level tools is part of the learning
objective — it worked well for our introductory course, where the
concepts being taught, rather than the tools, are the focus. Addi-
tionally, we provided each student with their own Jupyter notebook
hosted on the Riposte infrastructure. Each student’s Jupyter note-
book server is simply a container running on their assigned VM
and linked up to the main Riposte site. Thus a learner only needs
to log into the site to access their notebook.

Jupyter itself is a web client for writing Python code. Code in
Jupyter is organized into notebooks which are made up of many
cells. A cell can either be a snippet of Python code or some prose
written in a markup language, allowing users to freely interweave
formatted text and code. Python cells can be run individually and
print their output below them, allowing for quick feedback on
how a piece of code functions. A cell can also support other output
formats (e.g., graphs). These features make Jupyter notebooks a very
popular way of sharing code online, especially in the data science
communities. Thus, it is a great IDE to integrate into Riposte, as it
is both easy-to-use and practical. Jupyter has also been tested in
academia before, with Cardoso and Leitão [2] showing that it can
be an excellent tool to support the learning process.

5 Automated Feedback

The design of our platform allows us to track student progress and
provide feedback to students in a number of ways via different
modules. In the Game module, players are presented with statistics
about their play, including metrics such as damage taken, bullets
fired, and games lost. The server also privately tracks other infor-
mation about the player’s activity, such as login attempts, challenge
unlocks (and unlock failures). That information is relayed to the
main Riposte server, which uses it to update the learners progress
within missions and award trophies. Instructors can use this infor-
mation to track student progress.

The Code module (i.e., the Jupyter notebook environment) con-
tains a notebook template for each assignment. The template pro-
vides students with an automated checker which verifies that as-
pects of their solutions work correctly and monitors their activity.
This allows instructors to see when students are working, for how
long, and whether they are having any success. If we discover that
they are spinning their wheels, we can intervene to assist. Riposte
itself can also provide hints to help students recover through either
the Guide or the checkers. Once a student has completed all the
requisite tasks in a notebook, they can then submit it to a grading
service (through the notebook UI). The grader checks that their
solutions satisfy the constraints imposed and reports their perfor-
mance. It can also provide hints on incorrect answers. Since we
allow students to submit their work multiple times on most assign-
ments, they can leverage this feedback to refine their answers. As
with the Game module, all of the information is aggregated by the
main Riposte server and saved in the database for analysis.

While the results from the Game and Code modules are used to
automatically grade students, the grades produced are not final. As
our assignments are semi-structured, we manually review every
assignment and award partial credit for exploration and failed, but
noteworthy, attempts. Also, extra credit is given for novel solutions.
Initially, we awarded grades only after this manual review, but
found that many students were stressed by not having a concrete
rubric that provided expectations for their grade. We designed the
Mission module trophies and the grader to remedy this problem.
They help give students a sense of where they are on the grading
scale and indicate what they need to do to improve. Thus, our grader
reports an expected minimum grade.

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

32

The Leaderboard module ranks students based on their perfor-
mance in missions (primarily by the number of trophies they have
received). We report these rankings to students in two ways: a class-
wide listing of the 𝑛 top-ranked students and a private per-student
listing of their relative position. Students are listed by a handle, as
opposed to by real name, to allow students to remain somewhat
anonymous should they so desire. We present a student’s relative
position by listing their current position, along with who is directly
above and below them. We do this to mitigate the negative upward
social comparisons that can be engendered by seeing oneself placed
low on a large leaderboard, while still providing competitive learn-
ers with motivation (and bragging rights) for reaching the top. The
top 𝑛 ranking gives learners an idea of what level of performance is
needed to climb high up the leaderboard, while the relative ranking
informs them what they need to do to reach the next step up. This
allows students to easily set both short-term and long-term goals.

Assignments also have stretch goals, which go beyond what is
necessary to earn an "A" grade. To implement these, each assign-
ment is designed with multiple objectives that measure varying lev-
els of skill 1 and have many different solutions. The semi-structured
nature of the game along with the opportunities presented by being
able to hack it in various ways facilitates this greatly. As such, most
assignments come with some form of stretch goal that requires
students to evolve their approach beyond what is taught in class
to complete (e.g., by synthesizing their approach with information
from other domains or by inventing something new).

6 Individualized Learning

One of the benefits of computerized learning platforms is that they
provide the ability to automatically individualize the learning expe-
rience for each student. In our platform, individualization comes in
a number of forms. First, we have the aforementioned individual-
ized feedback within the game and IDE. Students can be given hints,
feedback, and even objectives on an individual basis according to
their performance and pedagogical needs. Second, exercises can
have their content randomized to prevent academic dishonesty. For
example, in one of our assignments students are required to crack
an encrypted trace and reverse engineer a path through an in-game
maze. We leveraged Riposte to provide each student with an differ-
ent random trace and adjust the in-gamemaze accordingly to match
this trace when the student plays. The level of individualization can
also go beyond simple randomization: in our password cracking
assignment, we now provide each student with a randomly selected
password (and associated hint) from the same class of passwords.

We also use individualization to promote growth-based learning.
By measuring initial student proficiency through pretests like our
“Field Exercises", we can get a handle on where a student is ini-
tially. By tracking how far they have advance in future assignments,
we can provide targeted feedback highlighting their success from
within Riposte. Just as we reward students who complete profi-
ciency stretch goals with extra trophies that place them higher up
on the leaderboard, we do the same for growth stretch goals. This
allows growers to see that their efforts are valued and motivate

1For more details on how we rank skill, see our previous paper [10].

them to continue. Growth-based assessment was factored into a
student’s final grade for the course.

7 Case Study

Two iterations of Riposte have been employed for teaching the
undergraduate “Introduction to Computer Security” class at our
university. A simpler version, including only the Game and Leader-
board modules, was used in the Fall of 2019. We then developed
the full version for the Fall of 2020. The 2019 course was taught
completely in-person, but, due to world events, the 2020 version
was taught in a distance learning setting. As result, we have been
able to evaluate how Riposte performs in each setting.

In both interventions, the class consisted of exercises/missions
related to online and offline password cracking, web client modifi-
cation, network traffic inspection, SQL injection, and cryptanalysis.
After each exercise, students were asked to complete a Likert-scale
questionnaire regarding how gamification affected their interest in
the assignment and perceived learning outcomes. Comparatively,
we measured hours spent on the platform and the students’ per-
formance as proxy metrics for actual engagement and learning
outcomes. Students were also asked to provide qualitative feedback
about their experience.

In the 2019 iteration, we found consistent, statistically significant
positive correlation between student’s interest in gamification and
their perceived learning outcomes, both in general and specific to
the topic of each assignment (see, statistical analysis of learning
outcomes in our previous paper [10]). We also found that many
students continued to play the game (up to more than 100 rounds
over 4-5 hours) despite having met the basic requirement for the
exercises. They did so even if it did not significantly improve the
quality of their solution (and even hurt it) [10]. We also received a
lot of positive qualitative feedback from students at the end of the
semester, regarding how interesting and engaging the assignments
were – with some even raving that this was by far the most fun class
they had taken within the CS department. These indicated to us
that gamification was very effective in keeping students engaged.

That said, there was room for improvement in the 2019 itera-
tion. For instance, many students expressed that they struggled
with parts of exercises that were irrelevant to the security concepts
we were trying to assess: 11/49 students wrote that they strug-
gled with writing asynchronous code in JavaScript and therefore
had trouble with some of the cryptanalysis assignments, and 6/49
students wrote that they had issues with one of the cryptanaly-
sis assignments because they were unaware that their editor was
surreptitiously inserting newlines (thereby leading to incorrect
hashes). Additionally, students often times found the lack of struc-
ture around grading intimidating and frustrating. To address those
limitations, we (a) integrated more opportunities for learning into
the Riposte Web UI, added in “Field Exercises” to assess prerequisite
knowledge, and displayed the student’s current grade in real time,
(b) integrated the Jupyter Notebook IDE into Riposte to standard-
ize student’s development environment, and (c) added automated
feedback to diagnose common, operational mistakes.

These changes correspond to the Jupyter Notebook and Web
Server components of the Riposte platform (Fig. 2). The impact of

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

33

these changes was evident in the 2020 iteration of the class, where
students did not report any major operational issue being a road-
block to completing an assignment. More important, we saw similar
qualitative feedback regarding engagement as that in 2019 (e.g.,“I
think the game format really helped me understand the concepts bet-
ter, and it was a lot more engaging than typical written homeworks;
This class is the most fun CS class I had at UNC, and I have learned
so much by working through all the challenges; The module-based,
gamified approach to learning was really great. I really enjoyed this
class, and it was very different when compared to other CS courses"),
and no negative ones concerning frustration and uncertainty. Fur-
thermore, the 2020 iteration demonstrated Riposte’s capabilities as
a distance-learning platform, aptly filling a void that existed in the
current educational landscape.

8 Other Related Work

In gamified settings, the STEAMiE Education Engine [13] provides
instructors with the tools to develop 3D educational games for
STEM courses. Its primary focus is on teaching engineering and
physics through designing and interacting with simulations. On
the other hand, the Simple Academic Game Engine (SAGE) [15]
is designed to teach computer science to students by having them
design and implement games within SAGE. As such, like Riposte,
the developed game itself is not educational per-se, but serves as
a vector for teaching the student programming concepts. Riposte,
unlike SAGE, is not a game engine that allows students to develop
their own games, but rather a game that allows students to exploit
and automate it. This is a better fit for our cybersecurity use case
as it avoids the need to teach unnecessary programming concepts,
while still utilizing a game properly focused on engaging gameplay
rather than education (as STEAMiE would create).

9 Conclusion and Future Work

We presented Riposte, an online gamified learning platform for
computer science and cybersecurity education. We outlined key
features of the platform and discussed how each helps facilitate
learning and, in particular, assists in each of Gagne’s nine steps of
the learning process. Our overall goals were to create a platform
for hands-on cybersecurity education, make exercises interesting
by applying them to a game, and support distance learning. We
evaluated how well our design worked in practice by utilizing it in
the Fall 2020 semester and found that, with Riposte, we could teach
a wide variety of cybersecurity concepts via hands-on exercises
in a distance learning environment while motivating students to
engage with the subject matter through the use of gamification.

Despite the success, there is still room for improvement. On the
technical side, Riposte utilizes a single central server with a single
central database for state tracking. This limits Riposte’s scalability
as having hundreds of student VMs would quickly overrun the cen-
tral server. Thus, ideally, further decentralization (e.g., via sharding)
is needed to remove this single point of failure. On the educational
front, more rigorous A/B testing is needed of the various aspects
of the platform along with further integration of per-student indi-
vidualization. Specifically, we intend to compare a gamified course

using Riposte to a gamified course without it (e.g., one that just
uses CTF exercises), and compare both to a non-gamified course.
On individualization, we need to better adapt the platform to the
many different ways players engage in games (such as goal-seeking
versus exploring). There is active research on designing and test-
ing AIs to personalize the gaming experience to these different
styles [18]. Riposte could leverage such techniques to help in indi-
vidualizing the gamified learning experience to best appeal to the
student’s style and thereby better promote engagement. These lim-
itations notwithstanding, we hope that the ideas described herein
will motivate similar approaches elsewhere in education.

10 Acknowledgments

We thank Jan Werner and Kedrian James for their help testing and
deploying various aspects of the Riposte platform.

References

[1] Shurui Bai, Khe Foon Hew, and Biyun Huang. 2020. Does gamification im-
prove student learning outcome? Evidence from a meta-analysis and synthesis of
qualitative data in educational contexts. Educational Research Review 30 (2020).

[2] Alberto Cardoso and César Leitão, Joaquimand Teixeira. 2019. Using the Jupyter
Notebook as a Tool to Support the Teaching and Learning Processes in Engineer-
ing Courses. In International Conference on Interactive Collaborative Learning,
Michael E. Auer and Thrasyvoulos Tsiatsos (Eds.), Vol. 2. 227–236.

[3] Martin Carlisle, Michael Chiaramonte, and David Caswell. 2015. Using CTFs for
an Undergraduate Cyber Education. In USENIX Summit on Gaming, Games, and
Gamification in Security Education.

[4] Melissa Dark. 2014. Advancing Cybersecurity Education. IEEE Security & Privacy
12, 6 (Nov 2014), 79–83.

[5] Fadi P. Deek, Ki-Wang Ho, and Haider Ramadhan. 2000. A critical analysis and
evaluation of Web-based environments for program development. The Internet
and Higher Education 3, 4 (2000), 223–269.

[6] Robert M Gagne and Leslie J Briggs. 1974. Principles of instructional design.
[7] Robert M Gagne, Walter W Wager, Katharine C Golas, and John M Keller. 2004.

Principles of instructional design (5th ed.).
[8] Juho Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does Gamification Work? –

A Literature Review of Empirical Studies on Gamification. In Hawaii International
Conference on System Sciences. 3025–3034.

[9] Christoph E. Hollig, Andranik Tumasjan, and Isabell M. Welpe. 2020. Individual-
izing gamified systems: The role of trait competitiveness and leaderboard design.
Journal of Business Research 106 (2020), 288–303.

[10] Mac Malone, Yicheng Wang, Kedrian James, Murray Anderegg, Jan Werner, and
Fabian Monrose. 2021. To Gamify or Not? On Leaderboard Effects, Student
Engagement and Learning Outcomes in a Cybersecurity Intervention. In ACM
Technical Symposium on Computer Science Education. 1135–1141.

[11] Daniel Manson and Ronald Pike. 2014. The Case for Depth in Cybersecurity
Education. ACM Inroads 5, 1 (Mar 2014), 47–52.

[12] Cristina Ioana Muntean. 2011. Raising engagement in e-learning through gamifi-
cation. In International Conference on Virtual Learning, Vol. 1. 323–329.

[13] Scott Nykl, Chad Mourning, Mitchell Leitch, David Chelberg, Teresa Franklin,
and Chang Liu. 2008. An overview of the STEAMiE Educational game Engine. In
Annual Frontiers in Education Conference. F3B–21–F3B–25.

[14] Geraldine O’Neill and Tim Mcmahon. 2005. Student-centred learning: What does
it mean for students and lecturers? Emerging Issues in the Practice of University
Learning and Teaching 1 (01 2005).

[15] Ian Parberry, J Nunn, Joseph Scheinberg, Erik Carson, and Jason Cole. 2007.
SAGE: a simple academic game engine. In Proceedings of the 2nd Annual Microsoft
Academic Days on Game Development in Computer Science Education. 90–94.

[16] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupé, Yanick Fratanto-
nio, Luca Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili. 2014. Ten Years of
iCTF: The Good, The Bad, and The Ugly. In USENIX Summit on Gaming, Games,
and Gamification in Security Education.

[17] Brad Wolfenden. 2019. Gamification as a winning cyber security strategy. Com-
puter Fraud & Security 2019, 5 (2019), 9–12.

[18] Jichen Zhu and Santiago Ontañón. 2020. Player-Centered AI for Automatic Game
Personalization: Open Problems. In International Conference on the Foundations
of Digital Games. Article 6, 8 pages.

Session 4A: Cybersecurity SIGITE ’21, October 6–9, 2021, SnowBird, UT, USA

34

	Abstract
	1 Introduction
	2 Design Overview
	3 Game Engine
	4 Web-based Development Environment
	5 Automated Feedback
	6 Individualized Learning
	7 Case Study
	8 Other Related Work
	9 Conclusion and Future Work
	10 Acknowledgments
	References

