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Abstract—The continuous discovery of exploitable vulnerabili-
ties in popular applications (e.g., document viewers), along with
their heightening protections against control flow hijacking,
has opened the door to an often neglected attack strategy—
namely, data-only attacks. In this paper, we demonstrate the
practicality of the threat posed by data-only attacks that
harness the power of memory disclosure vulnerabilities. To
do so, we introduce memory cartography, a technique that
simplifies the construction of data-only attacks in a reliable
manner. Specifically, we show how an adversary can use a pro-
vided memory mapping primitive to navigate through process
memory at runtime, and safely reach security-critical data that
can then be modified at will. We demonstrate this capability
by using our cross-platform memory cartography framework
implementation to construct data-only exploits against Internet
Explorer and Chrome. The outcome of these exploits ranges
from simple HTTP cookie leakage, to the alteration of the
same origin policy for targeted domains, which enables the
cross-origin execution of arbitrary script code.

The ease with which we can undermine the security of
modern browsers stems from the fact that although isolation
policies (such as the same origin policy) are enforced at the
script level, these policies are not well reflected in the under-
lying sandbox process models used for compartmentalization.
This gap exists because the complex demands of today’s web
functionality make the goal of enforcing the same origin policy
through process isolation a difficult one to realize in practice,
especially when backward compatibility is a priority (e.g., for
support of cross-origin IFRAMEs). While fixing the underlying
problems likely requires a major refactoring of the security
architecture of modern browsers (in the long term), we explore
several defenses, including global variable randomization, that
can limit the power of the attacks presented herein.

1. Introduction

Application exploitation has a long and storied history.
No sooner are defenses deployed than attackers find ways
to break down these barriers with ingenious tactics for
injecting or executing arbitrary machine code in vulnerable
applications. The soupe du jour relies on finding clever
ways to chain together small instruction snippets, called gad-
gets [59], to implement arbitrary malicious logic—easily by-

passing defenses such as Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR).

Admittedly, however, the exploitation of critical soft-
ware, such as browsers and document viewers, is getting
harder due to the deployment of additional security pro-
tections and exploit mitigations. Besides DEP and ASLR,
sandboxing is increasingly used in applications that render
untrusted input, control flow integrity (CFI) [2, 53, 68, 69]
protections have also recently been integrated in some
browsers, exploit mitigation toolkits such as Microsoft’s
Enhanced Mitigation Experience Toolkit (EMET) [47] are
being deployed in enterprise environments, and there have
been many recent research efforts on additional protections,
such as code diversification [7, 9, 31, 39, 52, 65] and
execute-only memory [5, 15, 17, 28, 29, 30, 38, 45, 62, 66].
Undoubtedly, these new protections have improved the secu-
rity landscape, in that although achieving reliable arbitrary
code execution in the face of these protections may still
be possible, they force the attacker to use more complex
exploits that must chain together multiple vulnerabilities.

Given a memory-related vulnerability, however, control
flow hijacking is not the only possible exploitation strategy.
An arbitrary memory access or corruption capability can
also be used to read private data, or write security-critical
data. As we show later, the former can lead to the exfiltration
of sensitive information through the available output chan-
nels of the vulnerable process, while the latter can be used to
subvert security policies or protections and eventually lead
to unauthorized data access or code execution.

Since the initial demonstration of such non-control-data
attacks by Chen et al. [25], their full power seems to have
gone unnoticed, at least until very recently [40, 41]. One
possible reason may be rooted in the belief that “iden-
tifying security-critical non-control data and constructing
corresponding attacks require sophisticated knowledge about
program semantics” [25, p. 5]. Indeed, common wisdom is
that the requirement of application-specific semantic knowl-
edge and the problems presented by the limited lifetime of
security-critical data are major factors that impose difficul-
ties for attackers. While recent work has attempted to make
it easier to identify and exploit security-sensitive informa-
tion, e.g., via coupling data-flow tracking, bug-finding tools,
and semantic knowledge of the target program [40], we shed
light on the fact that more practical strategies exist today.
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To see why, consider the ubiquity of inbuilt scripting
capabilities in complex, feature-rich applications, such as
browsers and document-related software, along with their
various plug-ins—all of which have been exploited because
of memory corruption vulnerabilities. Recent work by Snow
et al. [60] on just-in-time code-reuse attacks demonstrated
how integrated scripting support provides powerful capabil-
ities to adversaries, allowing them to dynamically interact
with application memory by manipulating code pointers.
Armed with a memory disclosure vulnerability, attackers can
use embedded malicious scripts (e.g., written in JavaScript
or ActionScript), to access arbitrary memory locations in the
address space of the vulnerable process, pinpoint useful gad-
gets, and synthesize them at runtime—thereby, effectively
circumventing code diversification protections.

More worrying, however, is the fact that more and more
of our online interactions involve web-based services, with
the browser being the main gateway to them. Essentially,
the browser is the new OS [64]. Thus, skilled adversaries
will inevitability shift their focus away from needing to gain
arbitrary code execution on the victim’s machine, to instead
leveraging data leakage attacks to find weaknesses in the
Emperor’s new armor. In doing so, attackers side-step the
challenges mounted by the myriad of deployed protections
against arbitrary code execution, and focus their attention
on gaining security critical information that can be used to
access the increasingly valuable amount of data stored in the
cloud. For instance, stealing a user’s session credentials for
a cloud storage service may actually lead to even more data
than what is available locally on a victim’s device, let alone
access to financial, e-commerce, and other online services.

We demonstrate the feasibility of constructing practical
and reliable data-only exploits against modern browsers
without deep semantic knowledge of the target programs.
The main facilitator of our attacks is a technique we call
memory cartography, which entails an off-line procedure
that allows an adversary to construct a map of the target
process’ data objects and their references. Armed with an
arbitrary memory read (or write) vulnerability and this pre-
computed memory map, an attacker can then use our frame-
work in conjunction with malicious script code to reliably
navigate through the process’ memory at runtime, and reach
critical data which can then be modified or exfiltrated.

2. Background and Related Work

2.1. Modern Browser Architectures

One contribution of this paper is bringing to the forefront
a better awareness of significant security risks in modern
browser architectures, especially those security practices that
are undermined when the full power of memory disclosure
attacks is realized. Thus, for pedagogical reasons, we first
present a brief review of the state of the art in browser
security. Interested readers are referred to previous works
that explore the trade-offs between performance, compat-
ibility, and security in the design and implementation of
contemporary browsers over the past decade [6, 32, 56, 64].

For the most part, the evolution in the design of modern
browsers relates to changes in the threat model they address.
Early on, the perceived threat lied mainly in protecting
users’ systems from harm caused by malicious sites (e.g.,
those that perpetrate code injection attacks to gain arbitrary
control of the victim’s machine), but over time, that model
evolved to also attempt to provide isolation between distinct
browser-based tasks, thereby not only protecting users but
also the individual sites they visit from cross-origin attacks.
Today’s widely-used browsers have adopted a multi-process
architecture that attempts to partition tasks into different
processes, but the driving factor has been to improve re-
sponsiveness and robustness, rather than security [64].

Nevertheless, there are security benefits of moving to-
wards a multi-process architecture. Given that the vast ma-
jority of bugs in a web browser exist in the code that parses
or renders web content—due in part to the wide range of
inputs that are processed by those routines, as well as their
inherent complexity—a multi-process model offers a way
to quarantine the rendering code to a process that does not
crash the entire application if a bug in the rendering engine
is exercised. In computer security parlance, the practice
of relegating certain parts of an application to a lesser
privileged process is commonly referred to as “sandbox-
ing.” Typically, the parsing and rendering of web content is
relegated to a low-privileged sandbox process, so that in the
event that security vulnerabilities in that code are exploited,
the damage can be contained. For instance, in 2014 alone,
more than 600 security vulnerabilities surfaced in Chrome’s
sandboxed code [27], but its multi-tiered architecture was
touted for limiting the impact of these vulnerabilities.

The most common desktop browsers (i.e., Mozilla Fire-
fox, Internet Explorer, and Google Chrome) offer different
levels of protection via their chosen sandbox mechanisms.
To date, Chrome’s designers have implemented what is
considered to be the state of the art in browser security.
Chrome is the only browser that completely restricts system-
level access to the code that renders web content. Addi-
tionally, it offers additional security protections, including
a limited support to render content from different domains
in different processes, but such origin protection is only in
effect when the experimental --site-per-process flag
is used.1 Such process isolation is implemented as a means
to reinforce the same origin policy (SOP) [67].

The New Armor: Process Isolation. Given the strong
security features of Chrome, we use it as a shining exemplar
of a modern browser architecture. At a high level, the
two main components of its sandbox architecture are the
“broker” process (which runs at a regular user privilege
level) and the various sandbox processes (which run with
restricted system access). Different sandbox designs are used
depending on whether they contain “renderer” code (i.e., the

1. Firefox can isolate plugins to their own process, but features all of
the web browser code in the same process [16]. Internet Explorer is some-
what of a hybrid between these two models—offering some sandbox-like
protection schemes—but its architecture is not nearly as fully developed of
a sandbox as Chrome [1, 57].
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Figure 1: Chrome browser architecture.

part of the browser that parses and renders web content) or
other components of the browser (e.g., third party plugins).
For brevity, we focus on the renderer sandbox, as this is
where the core features of the browser reside. Examples
of these core features include the DOM tree (including the
browser logic that implements the same origin policy), the
Javascript engine and the HTML renderer.

Figure 1 depicts the multi-process design of Chrome.
The target processes at the top represent the sandbox in-
stances, all of which communicate with, and rely on, the
main broker process. To fully isolate damage that may be
caused from activities within the target processes, Chrome’s
architecture further restricts the sandbox from gaining sys-
tem access through direct calls to the operating system.
To achieve such mediation, Chrome augments the sandbox
process’ security token in such a way that every request for
system access is denied. Any file or network access that is
needed by a renderer process to do its job is mediated by
the broker process, which closely scrutinizes the renderer’s
request before carrying out the desired function. The access
control enforcement mechanism implemented by the bro-
ker has at times contained flaws that allowed for sandbox
privilege escalation [51], but the existence of this reference
monitor offers yet another obstacle for an adversary who
might be able to exploit a vulnerability in the renderer.

Hardening The Old Armor to Better Enforce SOP. Isolat-
ing the renderer is only one part of the protection offered by
modern browsers. Isolating web content in one domain from
web content in another domain by rendering each of these
domains in different processes is another prudent security
practice [26]. This practice follows from the realization that
the same origin policy in browsers can be circumvented if
an attacker can exploit a vulnerability in the renderer code.
In essence, the same origin policy seeks to allow scripts
from different web pages of the same origin (hostname,
port, and protocol) to access all web content pertaining to
that origin, regardless of which page actually rendered the

content initially. On the other hand, a script from origin a is
not able to access content belonging to origin b. In this way,
if a web application opens a new window or tab in the same
domain, both pages can freely access each other’s content,
but otherwise unrelated web pages are separated from each
other. Thus, given two pages from origins a and b, the same
origin policy attempts to prevent a number of misbehaviors,
including (i) active content in b from successfully issuing
arbitrary HTTP requests to a; (ii) scripts in b from accessing
local or session storage that is meant to be specific to origin
a, as it may contain sensitive information not meant to be
shared across origins; (iii) scripts in b from accessing HTTP
cookies that are specific to origin a, as these cookies are
often used for authentication.

That said, the same origin policy is simply a logical
framework that guides the interpretation of scripts and the
rendering of content. Obviously, an adversary with direct
access to a process’ memory (e.g., through a memory disclo-
sure vulnerability) can conceivably undermine any protec-
tions provided by this policy. This issue was acknowledged
as early as 2008 [56, 64], and is one factor that led to
the rollout of Chrome’s Chromium-Sandbox and other
related app-isolation features [22]. The currently deployed
site-isolation feature seeks to reinforce the same ori-
gin policy so that content from different domains is not
only separated by barriers in the browser logic, but also by
the operating system’s ability to isolate processes from each
other. Unfortunately, the complex demands of today’s web
functionality make the goal of enforcing the same origin
policy through process isolation a difficult one to realize in
practice, particularly when backward compatibility remains
a priority. Our hope, in this paper, is to engage debate on
whether the benefits of continuing along this path outweigh
the risks that arise in the era of data-only attacks.

2.2. Exploit Mitigations and Data-oriented Attacks

Beyond the space of browser security, a wide array
of preventative measures have been proposed to thwart
both code injection and code reuse attacks—especially
those based on return-oriented programming tactics [59]
and related variants [11, 12, 14, 21]. These solutions at-
tempt to either enforce some form of control-flow integrity
(CFI) [2, 53, 68, 69] by following the principles first
suggested by Adabi et al. [2], or diversify the code of
the protected process to thwart the reuse of instruction
sequences [7, 9, 31, 39, 52, 65]. More recently, a large
body of work [5, 15, 17, 28, 29, 30, 38] has proposed
the use of a combination of execute-only memory [45]
coupled with randomized memory segments to undermine
attacks that leverage memory disclosures as a precursor to
building just-in-time code reuse payloads [60]. When source
code is not available, alternative approaches [62, 66] enable
binary compatibility by allowing the disclosure of code but
prohibiting the execution of any code that was previously
read (i.e., via a memory disclosure).

The increasing complexity of reliably achieving arbi-
trary code execution due to the numerous deployed exploit
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mitigations, along with recent incidents of data leakage
vulnerabilities (such as Heartbleed [33]), has prompted a
renewed interest into data-oriented attacks. Although the
possibility of such attacks was previously known [25], data-
oriented exploits against modern applications have only
recently started to emerge [36, 48].

A first effort in systematizing the construction of data-
oriented exploits was proposed by Hu et al. [40]. Their data
flow stitching technique takes as input a vulnerable program
with a memory error, an input that exploits that memory
error, and a benign input that triggers the same execution
path, and uses execution trace analysis (backward and for-
ward slicing) to pinpoint data flow paths between inputs
and pre-identified sensitive data. By automatically stitching
different data flows, the resulting constructed exploit can
either modify security-critical data to escalate privileges,
or read and exfiltrate sensitive data. The goal of data flow
stitching is different and complementary to this work, in
that it performs heavyweight execution tracing of a program
given a specific exploitable memory error, it does not work
reliably in the face of ASLR, and it has been applied only
on simple server programs.

In a follow up work, Hu et al. [41] demonstrated that
data-oriented programming techniques can be used to un-
dermine CFI defenses that trust the secrecy or integrity of
security-critical meta-data in memory. That is, they show
how turing-complete data-oriented attacks can be built that
use data plane values for malicious purposes but main-
tain complete integrity of the control plane. Similar ideas
in the control plane, that take advantage of flexibility in
the intended code paths of real-world programs, were also
demonstrated by Evans et al. [35]. Recently, Carlini et al.
[19] apply generalizations of non-control-data attacks to
show how an adversary can leverage a memory corruption
to bypass the most restrictive CFI policies. As is the case
with the techniques presented in this paper, CFI and related
defenses offer little, if any, protection against our data-
oriented attacks.

More recently, Jia et al. [42] showed that existing mem-
ory vulnerabilities in Chrome’s renderer can be used as a
stepping-stone to abuse the “web/local” boundary. Specifi-
cally, the authors show that because the security monitor’s
logic in Chrome is implemented as a set of function calls
in the renderer module, data-oriented attacks can be used
to undermine the SOP for scripts by changing the values
of in-memory flags and data-fields for security checks. The
security-critical data are identified via a best-effort approach
that looks for differences in security-check functions across
distinct execution traces recorded with the use of a debugger.
In contrast, our goal is to show that we can automatically
map the memory space of a process in a principled way,
and enable reliable navigation through its data structures
given an initial memory disclosure vulnerability, even in the
presence of contemporary defenses like ASLR. Our focus is
on modern web browsers—not just Chrome—but together,
these works underscore the threat posed by data-oriented
attacks that can completely undermine SOP enforcement.

Lastly, besides the enforcement of memory safety [3,

43, 50], other defenses against data-oriented attacks include
data flow integrity [20] and data space randomization [8].
Privilege separation [18, 55] and hardware-enforced isola-
tion of critical data such as cryptographic keys [49, 63] can
also mitigate the threat of data leakage attacks. We return
to these and other defenses later on in §7.

3. Adversarial Model

Throughout this work, we assume that the following
widely-accepted protections are enabled:

1) Data Execution Prevention
2) Address Space Layout Randomization
3) Modern Protections in Windows, including the exten-

sions available in the Enhanced Mitigation Experience
Toolkit (EMET) [47]

With regards to our adversarial assumptions, we assume
that adversaries are aware of a memory disclosure vulnera-
bility that allows them to read and write arbitrary memory
locations. As several recent works [10, 24, 28, 37, 46, 58,
60] have shown, these assumptions are no stronger than the
capabilities leveraged by skilled adversaries to defeat con-
temporary ASLR. Additionally, we assume that state-of-the-
art sandbox protections are deployed within the parent pro-
cess of the victim’s browser or application. We also remind
the astute reader that even fine-grained ASLR schemes (of
which many have been proposed in the academic literature
over the past few years [4, 15, 30, 38, 52, 65]) might be
assumed here; unfortunately, since all such schemes we are
aware of leave .data sections untouched, they too offer
little protection against the techniques discussed next.

4. Memory Cartography

A key observation in this paper is that although security
and privacy relevant data is well known to be present in ap-
plication memory (which is non-contiguous), techniques for
reliably bridging these isolated memory regions to navigate
memory are not immediately obvious. Indeed, one challenge
when leveraging a memory disclosure vulnerability lies in
navigating from a source memory region (i.e., the initial
disclosure point) to a destination memory region (i.e., where
the sensitive data resides), while ensuring that invalid mem-
ory addresses are not dereferenced [37, 60], as doing so
will crash the target process. Crashing the application would
spell disaster for the adversary, as the application would quit
before exploitation could be carried out.

As we began our deep exploration into data-only attacks,
however, we realized that there are application and operating
system agnostic techniques that allow one to navigate non-
contiguous memory without following any code pointers
(which would be thwarted by current code randomization
defenses [28, 29]). Sadly, the discovered techniques aptly
demonstrate the power (and ease) of data-only attacks—
whether ones that merely disclose information to the adver-
sary, or ones that completely control a victim’s browsing
session by subverting the same origin policy. We call our
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Figure 2: Workflow using the Pathfinder framework.

techniques for navigating non-contiguous memory regions
memory cartography.

To show that these memory cartography techniques are
effective across varying operating systems and applications,
even in face of widely deployed defenses, we designed and
built a prototype framework, called Pathfinder, which
demonstrates one instantiation of the concept. The over-
all workflow (shown in Figure 2) is as follows: First, an
adversary uses Pathfinder off-line to harvest in-memory
data pointers of the target process (Step �) and automati-
cally construct a portable memory map prior to exploitation
(Step �). Armed with a memory disclosure vulnerability
adapted to conform to a simple interface implementing
DiscloseByte and WriteByte functionality, the attacker
then provides an initial code pointer (Step �). With this as
a starting point, the attacker can then use data-only memory
manipulation scripting primitives to safely navigate through
the address space by dereferencing further pointers accord-
ing to the precomputed map, and disclose or rewrite critical
portions of memory (Step �) without the risk of accessing
an invalid memory address and crashing the application.

The implementation was highly involved, and successful
completion had to overcome several challenges. Neverthe-
less, we show in §6 that our implementation of Pathfinder
is more than sufficient for real-world deployment, both
in terms of stability and performance. In the remainder
of this section, we elaborate on the necessity of memory
cartography, the intuition of our approach, and necessary
components of our system. We later detail a concrete exam-
ple of an exploit on Chrome’s sandboxed renderers using
our framework in §6.

4.1. Navigating Memory

The overarching goal in this section is to disclose or
overwrite a destination memory region (e.g., on the process
stack, heap, or the “global” variables located in a code
module’s .data region) that contains sensitive data, by
leveraging an arbitrary memory disclosure vulnerability. For
example, one may wish to discover the value of an HTTP
cookie to hijack a victim’s authenticated session on another
domain. Through manual program analysis, we know that
modern browsers store cookies (at least transitionally) on
one of several process heaps. In this instance, consider a sce-
nario wherein the adversary has exploited an ActionScript
(i.e., Adobe Flash) vulnerability to overwrite the length field
of a string stored on the Flash heap with the maximum
integer value. By indexing into that string, the adversary can
effectively access arbitrary addresses relative to that string.
To enable arbitrary absolute reads or writes, that relative
read can be used to disclose a pointer reference to the string
(or any other object adjacent to it) in the same heap region,
which does not require navigating between isolated memory
regions. Once the address of the exploited string is known,
relative accesses can be adjusted to absolute accesses by
taking the difference of the desired address and the exploited
string object’s address.

At this point, although the adversary can read or write
to arbitrary locations in the vulnerable process’ address
space, locating the actual cookie remains a challenge due
to the fragmented nature of the address space. In particular,
although the cookie (destination) resides in the heap used
by the browser’s DOM rendering code, the only known
valid address (from the attacker’s perspective) is that of the
manipulated string, which resides on a different heap (the
Flash heap). The adversary has no method of bridging this
disconnect. Were one to simply guess program addresses for
the destination, the application would immediately crash on
an incorrect guess, and hence the exploit would fail. Ideally,
the vulnerable application would instead have exception
handlers in place around the code used to dereference mem-
ory. Gawlik et al. [37] have taken advantage of this particular
scenario, but we instead seek a generic, application and
operating system agnostic approach to safely reach critical
objects in a process’ address space. Our approach for solving
this problem in the general case is rooted in the inherent
presence of runtime linkages (pointers) between different
memory regions.

4.2. Exploration of Runtime Data Pointers

We start with the hypothesis that distinct regions of
memory, while not contiguous, are in fact frequently linked
by pointer references between them at runtime. If this hy-
pothesis holds, and the memory regions are well-connected,
one should be able to follow these linkages to navigate from
a source region, to zero or more intermediary regions, and
then to the destination region. Hence, the question arises
of whether these linkages are present, whether they are
strongly connected, and if they can be reliably identified
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Figure 3: Example process memory address space.

in face of address space layout randomization. The work
of Snow et al. [60] demonstrated that code linkages can be
reliably followed in face of fine-grained ASLR. In this work,
however, we are not concerned with disclosing gadgets
to use in a code reuse attack, but rather with reaching a
specified data destination (e.g., executable or library globals,
stacks, and heaps). While the aforementioned execute-only
memory primitives aim to mitigate code linkage disclosures
used in [60], our approach sidesteps that mitigation, as data
sections must remain readable.

For the remainder of this paper, we take a conservative
approach and consider a data pointer as simply a pointer
in the .data section of an executable or (shared) library
that points to any other valid memory location, be it a
memory region that represents code, data, or a hybrid of
both code and data, as illustrated in Figure 3. Let us consider
a few scenarios that support our hypothesis of data-pointer
linkages. Regarding data pointers to heaps (or fragments of
heaps), a globally defined object reference (in C++ parlance)
will, at some point during the execution of an application, be
initialized via a malloc or new instantiation, which allocates
the data for that object on one of the program heaps. In
turn, that global object reference will be set to point to that
location within the heap. Hence, data pointers (in the .data
section) should exist at that point to program heaps. Simi-
larly, objects may be allocated on the stack (i.e., function-
local objects), then later assigned to a global reference (more
on this in §6). Hence, data pointers to stacks should also
exist in .data sections.

Perhaps more important is the existence of data pointers
to other libraries, which themselves will contain more data
pointers to other heaps and stacks. For example, consider a
function that dynamically links to a shared library at runtime
(e.g., using LoadLibrary in Windows or dlopen in Linux
or OSX). Such a function would need to update a dynamic
linker structure in memory. This structure is responsible for
maintaining a list of all shared libraries mapped to process

Algorithm 1 HarvestDataPointers: discover runtime
data pointers to other libraries, stacks, and heaps.

Input: M {set of valid program memory regions}, D {set of
program .data regions}, P {size of pointer in bytes}
Output: E {set of edges between memory regions}
for region ∈ D do

for i = 0; i < |region|; i += P do
ptr = regioni:i+P

if ∃(ptr ∈ M) {valid address} then
{store valid edge}
E(regionname, regionbase + i) ←
(M(ptr)name, ptr)

end if
end for

end for

memory, and is located in user space for the Windows,
Unix, and Mac OS X operating systems. As such, one
would expect that pointers to these structures would reside
somewhere in the libraries implementing such functionality.

Indeed, our initial investigation revealed a multitude of
inter-region data references in several popular applications.
We detail the number of references and their types later, but
at this point it is sufficient to mention that these references
come from a variety of data sources pervasive in common
coding constructs, such as virtual function tables (VTables),
function pointers, library base address references, imports,
and variable definitions of objects allocated on the stacks
and heaps. With the intuition of why data pointer linkages
exist, the next section details how to leverage this informa-
tion to construct and use a portable memory map.

4.3. Our Approach

4.3.1. Step �: Data-Pointer Harvesting (Off-line). Under
the assumption that such data linkages exist, our approach
for navigating from a source memory region to a destination,
without dereferencing an invalid address, is to construct a
map consisting of edges from a source data region (the
.data section of an executable or library) to a destination
code (i.e., an executable or library .text section) or data (a
heap, stack, or another .data section) region. As our goal
is to achieve this navigation in an application and operating
system agnostic way, we approach the problem with the as-
sumption that no semantic knowledge about any data pointer
is available. Further, recall that linkages will not statically
exist in the application executable and library files because
all these pointers are dynamically determined at runtime.
That is, the .data sections will hold null references both
in executable files and memory until the process initializes
those values at various points during execution.

Hence, we start by launching our target application
and performing the basic program actions (manually) that
a victim might take. For instance, for web browsers, we
navigate to several web pages, or for document readers,
we simply open a document. In performing these actions,
libraries are loaded and initialized, along with the variables
in their data sections. At this point, we pause and examine
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the process memory to construct a memory map for this
particular instance. One way to construct such a memory
map is to scan the data sections of all modules (i.e., the main
executable and shared libraries) and interpret all 4-byte (32-
bit) or 8-byte (64-bit) aligned values as pointers. Whenever
such a data pointer to a valid memory location is found,
an edge is created between the source and its corresponding
destination location. This process is detailed in Algorithm 1.
The idea is that enough edges will be generated to fully
connect a graph of all mapped data memory regions.

Of course, the memory layout of an application running
on one system will likely be different from an instantiation
on another system due to executable and library reloca-
tions wherein entire modules are loaded at different base
addresses. This can occur by coincidence (for compatibility
reasons) or as a result of address-space layout random-
ization. In either case, the map would be useless without
making it portable across differently randomized runs. Next,
we discuss how we address this challenge.

4.3.2. Step �: Generating a Portable Memory Map. The
edges identified in §4.3.1 suffer from two problems: (i) using
absolute addresses for source and destination locations is not
portable across randomized program instances, and (ii) we
have no assurance that the identified links are not false
positives, i.e., data values that happen to reference valid
memory locations when they are interpreted as pointers,
but which actually are just arbitrary data, and thus not
consistent across different runs of the same application.
Without resolving these issues, an exploit following the links
in our map will likely dereference an invalid address and
crash the program before completing its malicious actions.

The first problem is resolved by storing links as relative
offsets into a specific library. Although ASLR relocates
libraries, relative locations within a library are not ran-
domized. Hence, vertices in our memory map graph take
the form of (src name, src offset) → (dst name, dst offset)
where name is a designation of a library’s file name (e.g.,
libc, kernel32), a specific thread’s stack (e.g., stack1, stack2),
or a process heap (e.g., heap1, heap2). The implication is
that a single leaked data pointer to a memory region will be
enough to determine the exact location of the data section
of the module in which that region resides.

To reduce false positives, we apply a rather simple,
but effective, approach: we simply repeat the above pro-
cedure after rebooting the machine on which the off-line
map is being generated. By rebooting, the effects of ASLR
(wherein the location of all libraries in program memory
are re-randomized) can be effectively dealt with. That is,
some pointers that by chance dereferenced to valid memory
locations will now point to invalid memory, or perhaps to
a different memory region altogether. By only keeping data
pointers that consistently point to the same offset in the same
memory region, we are able to eliminate all false positives
after a few iterations of refinement (see §5 for more details).

At this point we have a (hopefully) well-connected graph
of memory region linkages. As an optimization, we can
remove duplicate edges (e.g., duplicate links from one region

to another), to consolidate the graph. Next, we show how
this memory map can be used.

4.3.3. Step �: Adapting a Memory Disclosure for Mem-
ory Cartography. With a memory map in hand, the next
step is to adapt a memory disclosure to our interface, and
leverage the framework to access or modify any sensitive
data indexed by the map. To do so, a DiscloseByte func-
tion must be implemented on a per-exploit basis that reveals
the value of a single byte of memory at a given address.
If the goal is simply to disclose sensitive information, as in
our cookie example in §4.1, then this one function is all that
is required. On the other-hand, if the goal is to overwrite
arbitrary values in memory, then the memory disclosure
must also be adapted to write arbitrary values of memory
with a WriteByte function.

In many cases involving memory disclosures en-
abled by script-accessible vulnerabilities, the adaptation is
straightforward—in our string exploit example in §4.1 the
solution is obvious: just modify the string instead of reading
it. In other cases, as for example with the HeartBleed
memory disclosure vulnerability, it is not possible to write
memory. While this capability depends on the circumstances
of the exploit, it is safe to assume that script-oriented
exploits frequently offer this power to the adversary, and
so we explore the case of an adversary who has this ability.
Built atop these two primitives, we provide the following
primitives:

ReadMemory · WriteMemory Reads or writes an arbi-
trarily sized chunk of memory with repeated uses of
DiscloseByte · WriteByte.

ShortestPath Given a source memory region name (e.g.,
jscript9), an address and destination memory region
name (e.g., heap2), uses the memory map to return
Dijkstra’s ShortestPath to the destination.

MemoryRegion Given a source memory region name and
address, as well as a destination memory region name,
dereferences the chain of links in the ShortestPath to
return the destination region’s start address and size.

Stacks · Heaps · Libraries Given a source memory region
name and address, uses ShortestPath and MemoryRe-
gion to return a list of addresses to all known stacks,
heaps, or libraries.

HeapBase Given a pointer to a heap, finds the base address
of the heap by stepping backwards through memory
until the OS-specific heap header is found.

FindMemory · ReplaceMemory Given a MemoryRegion,
returns the chunk(s) of memory that match the specified
regular expression or replaces it with the specific buffer
of data.

SnapShot Given a source memory region name and ad-
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dress, finds a path to every other memory region and
returns an application memory snapshot (e.g., core,
minidump).

By now the astute reader should recognize the unbri-
dled power of combining a memory map with a memory
disclosure: the adversary now completely controls the ap-
plication’s data from a script without any risk of crashing
the process due to an invalid address dereference. Next, we
first briefly discuss how to leverage this power, and later
provide a concrete example in §6.

4.3.4. Step �: Following Data Pointers at Run-
time. Given the memory map constructed in Steps �
and �, the adversary’s exploit-specific implementation of
DiscloseByte and WriteByte, and the helper routines
provided by our framework in Step �, let us now return
to the cookie disclosure example put forth in §4.1. We left
off at a point where the adversary obtained a pointer to the
Flash heap (where the exploit took place), but ultimately
needs to navigate to the heap used by the browser’s DOM
rendering code. Recall that we only inspect the .data
sections of executable and library regions for edge sources,
while heaps and stacks are only considered as destinations.
This is intended, as the relative offsets of our pointers
within a heap will likely change from one application run to
another. Hence, the adversary must provide an initial source
memory region that represents either the main executable
module or any of the loaded libraries.

Identifying the address of a library can be done given
that one can already read arbitrary data on the initial heap.
At a high-level, the memory disclosure vulnerability can be
used to leak a VTable pointer of any heap object, and using
in-built scripting (e.g., Flash) one can instantiate any number
of these objects on the heap. The VTable will contain
pointers to the machine code implementing the object’s
methods, which means that the adversary can first disclose
a VTable pointer, then reach a code pointer pointing to the
library implementing the object’s function within that table.
Even in face of ASLR, this function pointer will be at a
fixed offset from the library’s base address.

With a source library in hand, the adversary can follow
the shortest path to the heap used by the browser’s DOM
rendering code to arrive at the given destination, derefer-
encing each pointer along the way to arrive at the next.
Once the adversary has navigated to their destination, it
is simply a matter of searching that chunk of memory to
find the relevant information to disclose. At this point the
possibilities are endless. We explore some possibilities later
in §6 after detailing our cross-platform implementation.

5. Implementation

To evaluate our memory cartography technique’s ap-
plicability to a wide variety of applications and operating
systems, we developed a cross-platform implementation of
our Pathfinder prototype framework on 32-bit Microsoft
Windows, 64-bit Apple OSX, and 64-bit Linux in C++.

Most of the framework code is application-independent,
e.g., the code that implements data pointer scanning, graph
construction and pruning, and shortest path computation,
but each OS required a small amount of platform-specific
code to (i) obtain a ground truth memory mapping for
each application, as reported by the OS, and (ii) read the
contents of the target process’ memory. For obtaining the
true memory map during our off-line data pointer gathering
phase (Step �) we used the NtQueryVirtualMemory API
on Windows, the proc filesystem’s /proc/[pid]/maps file
on Linux, and the vm region API on OSX. To read a
remote application’s memory during map construction we
used ReadProcessMemory.

As discussed in §4, the off-line stages of the memory
cartography step require that we take an iterative approach in
order to eliminate false positives. Table 1 reports the number
of false positives eliminated from the memory map in each
pass after the map’s initial construction. Notice that by the
second iteration, only a few false positives remain, and for
the applications we tested, false positives were completely
eliminated within three iterations.

TABLE 1: False Positives Remaining (Memory Map)

Application 1st Pass 2nd Pass 3rd Pass
Internet Explorer 26326 1 0
Google Chrome 1549 0 0

Firefox 13071 20 0
Adobe Reader 78231 4 0

To provide the reader with more insights into how
connected the nodes are in the maps we generate, Table
2 shows the edge connectivity of each memory map. Edge
connectivity indicates the minimum number of edges (see
4.3.1) whose removal disconnects all paths between sources
s and sinks t of interest in the proof of concept. In this case,
all edges are assigned a weight of 1.

We also explored the minimum s-t cut for each graph,
wherein system libraries (e.g., any shared library that is not
specific to an application) are assigned a weight that is
one half the cost of non-system libraries. We performed
this analysis as one might argue that it is more natural
to expect system shared libraries to exist on a similar, but
not necessarily identical, target machine where the map is
going to be used at runtime. Hence, we are interested in the
minimum cut that optimizes paths through system libraries.
Intuitively, the closer the ratio between edge connectivity
and the minimum s-t cut is to 1, the more portable the map.

Table 2 shows the results prior to the refinement of
removing duplicate links to consolidate the graph. Note that
for IE, Adobe Reader, and Firefox, we observe that the
minimum s-t cut is close to the edge connectivity, suggesting
that maps are robust. Interestingly, for Chrome, the ratio is
larger, but we note that this is because the average length of
the path from s (chromechild.dll) to t (a custom heap)
is 1, and that particular sink is a non-system DLL.

While Table 2 exemplifies the overall connectivity of our
resulting map, navigating to some regions is more useful
than others. For instance, many of the concrete attacks we
enumerate in Section 6 require access to the program heap. It
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TABLE 2: Memory Map Statistics

Application Source (s) Sink (t) Min ; Avg Path Connectivity Min s � t Cut
Firefox xul.dll ntdll.dll 1 ; 7 80 87

Adobe Reader npswf32.dll ntdll.dll 1 ; 8 41 43
Internet Explorer Flash.ocx ntdll.dll 1 ; 3 11 11
Google Chrome chrome child.dll Custom Heap 1 ; 1 4 8

is worth noting that we identify linkages to at least one seg-
ment of each application heap in all experiments. However,
the pointers outgoing from those segments will vary between
runs, as object addresses allocated on the heap are not
deterministic. As such, with heaps we cannot use the same
general strategy of following pointers from a fixed offset
of the incoming edge, as those offsets vary. Hence, heap
segments in our map currently only have incoming edges.
Regardless, the segments we identify using Algorithm 1.
alone successfully facilitate the attacks outlined in section
6. If necessary, however, one could use heap layout-specific
knowledge to parse and enumerate all heap segments and
further increase map connectivity.

The construction of a memory map for a given target
is a quick process. Indicatively, constructing the memory
map for chrome.exe of Google Chrome—which requires
parsing several hundred MB of memory—takes under a
minute, while the same process for iexplore.exe of In-
ternet Explorer is even faster, in the order of a few seconds.

5.1. A Note on Cross-Library Data Pointers

With an implementation at hand, we ventured to bet-
ter understand why there are data pointers that reference
libraries. In the remaining discussion, we focus on Internet
Explorer 11, since 98% of all data pointers in its memory
map had associated debug symbols, and the existence of
these symbols helped our understanding of these linkages.

Of all the data pointers that had associated debug sym-
bols, 81.2% of them were referencing VTables in other
shared libraries. This seems to be a result of several
practices, including using an Object-Oriented Programming
paradigm. For ease of exposition, suppose that class F is
implemented in shared library LibA. Class F likely con-
sists of virtual methods, which are inherited by all objects
instantiating F. Now, suppose an object f obj of class
F is created in a different shared library, denoted LibB.
The code that implements f obj’s virtual functions resides
elsewhere, so there will be a linkage in f obj’s VTable
referencing the code in LibA.

In addition to VTable pointers, we observed two other
main types of data pointers: hmod and imp .
The former are references to the base addresses of other
shared libraries, while the latter are simply function im-
ports. Although these function pointers exist outside of
the .idata sections of shared libraries (which typically
contain function pointers for imports), we observed that

imp pointers are imports not included in the .idata
sections. We hypothesize that these function pointers are
global variables instantiated using the GetProcAddress

Windows API call. We return to a discussion on disallowing
cross-compartment pointers as a mitigation strategy in §7.

6. Evaluation

We now return to our discussion on the same origin
policy (SOP) in modern browsers (§2) to demonstrate the
power of our memory cartography technique by shedding
light on its real-world implications. We first elaborate on a
common overarching scenario that facilitates the attack, then
detail two (of the hundreds of disclosed vulnerabilities) that
could be used to disclose memory in a browser’s renderer
process, and finally present real-world examples of SOP-
violating actions. These examples highlight the urgency to
address weaknesses in the current thinking about content
isolation and browser security given the ease with which
one can take advantage of data-only attacks.

6.1. Example Scenario

For pedagogical reasons, our attack scenario begins like
any other so-called drive-by download. That is, we assume
that the adversary has compromised some vulnerable web
server and has embedded a hidden IFRAME that secretly
directs all subsequent visitors of that site to the exploit
landing page. The goal, however, is not to inject code into
the browser and ultimately install malware—we assume that
the browser’s renderer is sandboxed, and that the sandbox
does not allow the browser code, whether newly injected or
not, to interact with the underlying operating system in any
meaningful way. Furthermore, we assume that the broker
process, which acts as a gatekeeper between the sandbox
and the operating system, does not not contain any logical
flaws or memory error vulnerabilities, nor do the OS-level
system calls. Hence, we are isolated in the renderer process.

It is expected that many of the victims interact with
a plethora of other web sites prior to reaching the adver-
sary’s page, whether in that same browsing session (hence,
likely using session cookies) or at some point in the past
(where persistent cookies are used). Our initial goal is to
obtain the cookies from the victim’s browser. As cookies
are often used for authentication, the adversary can use
those cookies to access the victim’s emails, shopping and
credit card information, home address and phone number,
banking account numbers, and even profile their personal
(and possibly embarrassing) habits.

In the past, attackers followed one of two routes to
obtain this information. They either exploit a web site-
specific cross-site scripting (XSS) vulnerability, which is
quite limiting considering that only the one web site’s
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credentials can be leaked, or the adversary compromises the
entire system via code injection or reuse to install malware.
Once the malware was installed, one could exfiltrate not only
cookies, but also documents on the local file system. Sand-
boxing, however, has severely handicapped those attacks in
recent years. Data-only attacks are a middle-ground, both
for attackers and defenders, in that the sandbox quarantines
the spread of injected code, but as we will demonstrate
adversaries still have at their fingertips a capability that
far exceeds any individual XSS, cross-site request forgery
(CSRF), “clickjacking,” or any other attack at the web appli-
cation layer. Indeed, an attacker using our framework holds a
capability that exceeds holding any web-based vulnerability
for all web sites combined.

To reap the benefits of our framework in a sandboxed
web browser, we need to first (i) render each domain of
interest in the same process as our attack domain, which we
call process feng shui,2 so that a remote domain’s application
memory is available to us, then (ii) exploit any memory
disclosure vulnerability to conform to our DiscloseByte ·
WriteByte interface, so we can read and write that memory
at will from our script, and finally (iii) navigate memory
with our data-only primitives to grab cross-domain infor-
mation and overwrite security-relevant variables in memory
to violate cross-origin policies where needed.

6.1.1. On finding target variables. We note that find-
ing security-relevant variables in memory is a non-trivial
process, but it is still easier than one might expect. For
instance, Chrome has a code search feature which can be
used to find variables of interest, e.g., cookies. When public
debug symbols are available, they can also be used to help
identify security-relevant variables. Moreover, in the case
where the target application offers security-related settings
or flags (e.g., enabling Flash, disabling SOP, or disabling
warnings), a rather effective technique is to perform data-
flow tracking (e.g., using popular tools [44]). For the attacks
in this paper, we leveraged both code search and data-
flow tracking facilities to quickly identify targets. Skilled
adversaries would do the same.

6.1.2. Process Feng Shui. A precondition for the appli-
cation of our memory mapping attack to web browsers is
the ability to cause web content from different domains to
be rendered in the same process. Unfortunately, under the
current process isolation model of Chrome, newly created
tabs as well as cross-origin browser-initiated navigations
(e.g., address bar or bookmarks) will generally cause a pro-
cess swap, while renderer-initiated navigations (e.g., links,
IFRAMEs, window.open()) stay in the same process. This
means that there are many cases of content from different
domains being rendered in the same process. An attacker
can, for example, programmatically achieve this by either
including content from a different domain in an IFRAME, or
automatically opening a new page from a different domain

2. A play on heap feng shui, which is used to precisely arrange objects
on a process heap prior to exploitation.

using an A tag or by calling the window.open() JavaScript
function, an approach that we dub process feng shui.

1 var vuln = null;
2 var vuln_addr = null;
3

4 function InitExploit() {
5 var a = new ArrayBuffer(SMALL_BUCKET);
6 a.__defineGetter__(’byteLength’, fuction() {
7 return 0xFFFFFFFC;
8 });
9 vuln = new Uint8Array(a);

10 vuln_addr = vuln[offset_to_ptr] -
11 offset_from_vuln;
12 }
13

14 function DiscloseByte(addr) {
15 if (vuln_addr > addr)
16 return vuln[0x10000000
17 + (addr-vuln_addr);
18 else return vuln[addr-vuln_addr];
19 }
20

21 function WriteByte(addr, byte) {
22 if (vuln_addr > addr)
23 vuln[0x10000000
24 + (addr-vuln_addr)] = byte;
25 else vuln[addr-vuln_addr] = byte;
26 }

Listing 1: Chrome CVE-2014-1705 implementation of
DiscloseByte · WriteByte.

Chrome’s security architecture does not include a way to
render these different domains in different processes without
breaking compatibility for cross-origin IFRAMEs. That is,
if a malicious site embeds an IFRAME to google.com, the
rendering engine loads the IFRAME in the same process as
the parent page, thus making the cookies and other origin
state accessible to the (possibly exploited) process. This is
true of all major browsers today. Thus, an attacker can use
one of the above two methods to trigger the rendering of
web content from a target domain in the same context as the
malicious page’s domain, and subsequently subvert the same
origin policy to steal private data from the victim domain—
all within the confinement of the sandbox.

For completeness, we briefly address how an attacker
may perform similar process feng shui in the other two
browsers considered in this work (i.e., Firefox and IE). Note
that we assume the attacker can trigger a vulnerability in
the browser’s rendering code itself, rather than exploiting
third party plugins, which are at times rendered in different
processes than the browser. When mounting this attack
against Firefox, the attacker does not have to perform any
process feng shui at all, since all rendering code in Firefox
takes place in the same process.

Internet Explorer, on the other hand, does feature a
multi-process architecture that requires some manipulation
by the attacker. Sadly, IE only places the rendering of
different web pages into different processes for the sake of
performance and reliability, rather than reinforcement of the
same origin policy. Thus, the multi-process architecture of
IE can be overcome through process feng shui on the part
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of the attacker, due to the following design choices in IE:
(1) Tabs are only rendered in a new separate process when
there is sufficient system memory. The attacker’s page can
allocate a significant fraction of system memory, thus ensur-
ing that IE will decide to place the victim tab in the same
process as the malicious page. (2) New tabs are assigned to
IE processes in a predictable round-robin fashion. Thus, by
using varying degrees of process feng shui, in all browsers
we tested an attacker can always reliably cause content from
an arbitrary domain to be rendered in the same process as
the malicious domain.

6.1.3. Memory Disclosure. At this stage, we assume that
the adversary has pinpointed information of interest into
the browser’s memory, but still needs to leverage the
DiscloseByte · WriteByte interfaces to utilize the prim-
itives provided by the framework to subsequently disclose
the desired information. To exemplify this process, we
demonstrate how one can implement the primitives in both
Internet Explorer 11 via the Flash vulnerability CVE-2015-
0359, and in Chrome 33 via the JavaScript vulnerability
CVE-2014-1705.3

The Chrome vulnerability takes advantage of the defi-
neGetter feature, which enables one to (re)define properties
of JavaScript objects. However, some key properties should
not be re-definable, such as an array length, which is exactly
what this exploit takes advantage of in Listing 1. To setup
the exploit, a new array is created in line 5, then its length
property is redefined to always indicate a length several
bytes short of the largest 32-bit integer in lines 6–8, and
a new byte array is defined in line 9 that uses that new
definition. Given that the adversary can now index into any
offset of an array, regardless of its actual allocated size, any
address relative to the start of that array can now be read.4

Finally, we use heap feng shui to arrange objects on the
heap nearby the array (not shown in listing) that contain self-
references, then use the exploited array to perform a relative
read and disclose one of these references and determine the
absolute address of the array in lines 9–10. At this point,
DiscloseByte · WriteByte interfaces are implemented
by adjusting the given absolute address to the corresponding
address relative to the exploited array and reading or writing
at that offset.

The Flash vulnerability used for Internet Explorer,
however, is more complex in its implementation. In
short, CVE-2015-0359 is a use-after-free vulnerabil-
ity wherein an ActionScript worker attempts to use a
ByteArray (the domainMemory member variable of the
flash.system.ApplicationDomain class) after it was already
freed by another worker. To implement the DiscloseByte
· WriteByte interfaces, we again use heap feng shui to
ensure that another object is allocated in the freed domain-

3. Because we do not have a more recent vulnerability at hand, we
also simulated the CVE-2014-1705 vulnerability in Chrome 50—the latest
version as of this writing—and the attacks described herein still work after
process feng shui is achieved.

4. Addresses lower than the array address can also be read because
overflowing the index results in lower address accesses.

Memory slot before it is reused. We then use this newly
allocated object to modify the bytes in that memory slot that
correspond to the offsets where the expected ByteArray ob-
ject’s length member variable is stored. As a result, the new
worker’s domainMemory can now access data at any offset
similar to the replaced array length in the Chrome exploit.
Hence, from this point on the primitives are implemented
identically to those in Listing 1.

We also note that heap overflow vulnerabilities can also
be used to implement DiscloseByte · WriteByte inter-
faces in a similar way by using heap feng shui to arrange the
overflowed buffer just before a string or array with a length
variable that is overwritten with a large value. Next, we
show how to leverage our framework once these primitives
have been implemented.

6.2. Disarming Same Origin Policy

At this point, the victim has rendered the malicious
landing page in a hidden IFRAME from a compromised web
site, our embedded JavaScript rendered a number of other
domains within the same program address space, and the
full functionality of our framework from §4.3.3 is utilized by
implementing DiscloseByte and WriteByte using CVE-
2014-1705 or CVE-2015-0359.

These next sections guide one through the necessary
navigational steps to obtain all authentication cookies for
remote domains, and read, write, and execute DOM contents
in a remote domain, as well as make authenticated requests
on behalf of the user in a remote domain, which can be used
to establish persistence within the browser, among other
malicious purposes. For brevity, the next sections detail only
the SOP attacks against the sandboxed Chrome browser
process within the provided code snippets, but we also
briefly mention how the same functionality can be achieved
in Firefox and Internet Explorer where the attack varies due
to internal browser implementation details. We note as well
that nearly all the weaknesses in content isolation logic listed
by Zalewski [67][Chapter 9] can be exploited using data-
only attacks of the kind presented herein.

6.2.1. Undermining the Security Policy for Cookies.
Listing 2 demonstrates one tactic for using our data-only
primitives to leak cookie values across domains. In this
listing, we have already (i) constructed a memory map off-
line, (ii) implemented DiscloseByte and WriteByte us-
ing CVE-2014-1705, (iii) followed the relative-offset paths
from the memory map online to obtain runtime addresses
of libraries and heaps for this application instance, and (iv)
used process feng shui to render two different domains in
the same Chrome sandbox instance. Hence, we know that
cookie values for both domains should be present some-
where in the same process address space.

With all these pieces in place, what remains is a simple
matter of iterating over the process heap regions to identify
the cookies. We do this in two ways. The first method
(scriptCookies) searches memory using a regular expres-
sion that represents the script-accessible cookie structure
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(e.g., name=value; expires=date;), while the second method
(requestCookies) identifies non-script accessible cookies by
looking for cookies in request heads (e.g., formatted as
Cookie: name=value). To ensure that cookies are present in
memory as request headers, we can use JavaScript a priori
to make requests to the target domain, which automatically
adds cookies to requests, including those served over secure
connections. Again, as discussed earlier, the code-search fa-
cilities (e.g., in Chrome, web searches) made it surprisingly
easy to find the variables of interest.

1 // Example 1 - Harvest document.cookie from Heap
2 var scriptCookies = Heaps(leaked_library).map(
3 function(heap) {
4 return FindMemory(
5 heap.address, heap.length,
6 s/(< ... snip cookie regex ... >)/g);
7 }
8 );
9

10

11 // Example 2 - Harvest Cookie Request Header
12 var requestCookies = Heaps(leaked_library).map(
13 function(heap) {
14 return FindMemory(
15 heap.address, heap.length,
16 s/(Cookies: .*)/g);
17 }
18 );

Listing 2: Harvesting another domain’s cookies,
including HTTP-only and secure cookies, using the data-
only primitives provided by our framework.

One can envision a number of other tactics using our
primitives to disclose not only cookies, but also other sensi-
tive information such as SSL keys, user names, and system
configuration. Next, we show one more technique that can
not only leak cookies, but also completely circumvent the
same origin policy to allow injecting scripts across domains
without traditional cross-site scripting (XSS) vulnerabilities,
but instead using our data-only primitives.

6.2.2. Undermining Same Origin Policy. The same origin
policy is the foundation of web-based security, but Listing 3
demonstrates one way to undermine SOP using data-only
primitives to inject scripts across domains. Unlike traditional
XSS, which requires a vulnerability in each targeted do-
main’s website, a single memory disclosure vulnerability,
combined with our framework, enables one to perform
cross-domain script injection to all domains.

First, we search the heaps for the SecurityOrigin object,5

which implements the policy-engine for deciding which
cross-origin requests are allowed. We search for the val-
ues of member variables in the class, which include the
port number repeated twice, followed by a boolean value
(m universalaccess) which defaults to false. Line 5 of
the listing represents the hexadecimal encoding of these
values for a domain running on port 8080. Line 6 indicates
what to replace the values with, wherein we toggle the

5. See the SecurityOrigin definition.

m universalaccess variable to true. When this variable
is true, the domain represented by that SecurityOrigin is
allowed to access any other domain’s DOM.

1 // Step 1 - Modify our SecurityOrigin
2 Heaps(leaked_ptr).map(function(heap) {
3 // SecurityOrigin.m_universalaccess = true
4 ReplaceMemory(heap.address, heap.length,
5 s/(\x1F\x40\x1F\x40\x00\x00)/g,
6 "\x1F\x40\x1F\x40\x00\x01");
7 });
8

9 // Step 2 - Freely manipulate remote DOM
10 var e =
11 newtab.document.createElement("script");
12 e.text = "alert(document.cookie)";
13 newtab.document.body.appendChild(e);

Listing 3: Setting the m universalaccess member
variable of the current web page’s SecurityOrigin object
to true and manipulating the remote domain’s DOM.

In lines 9–13 we use the universal access capability to
append JavaScript code to an arbitrary domain’s document-
object model, which is subsequently executed in the context
of that target domain. Notice that here we are modifying
elements in memory after they are checked, undermining
the security of the DOM policy via a classic time-of-check-
to-time-of-use (TOCTTOU) [13] abuse. Additionally, while
we only use that cross-domain script injection to leak cookie
values in this case, clearly this capability could be used
for much more nefarious actions, such as accessing web-
based emails, bank accounts, or other services on behalf of
the attacker from the victim’s own browser. Hence, without
true site isolation, “stronger protection for: cookies, docu-
ments (html/xml/json), stored passwords, site permissions,
and HTML5 stored data” [26] will remain unachievable in
practice. We reiterate that this failure is not a Chrome-
specific issue, as it is even less hardened in other modern
browsers we have examined. We refer the interested reader
to the excellent book by Michal Zalewski [67] for a deeper
discussion of life outside same origin rules, and the impli-
cations thereof.

7. Mitigations

Addressing the underlying problems with the current
browser security architecture that permitted our attacks re-
quires support for out-of-process IFRAMEs, but the rollout
of that enhancement appears to be a key reason why proper
site isolation has taken years to implement. Such code
refactoring is not as simple as it may seem at first blush
since putting an IFRAME in a different process than its
parent page affects a multitude of features in the renderer
process, as well as many from the browser process, includ-
ing navigation, painting, cross-origin scripting, find-in-page,
accessibility, printing, to name a few—“it basically requires
a new browser architecture to be implemented, with scores
of features updated along the way” [Charlie Reiss]. In lieu
of such architectural changes, we explore other possibilities.
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7.1. Module Compartmentalization

The observant reader would surely have noted that in the
proof-of-concept exploits presented earlier, the memory map
was used to find a path from a source (the leaked pointer) to
a particular destination where some action was carried out
(e.g., overwriting security-critical data). Such cross-module
data accesses, whereby a module reads a data section (either
its own or the data section of another module), are significant
enabling factors in the attacks described herein. A natural
defense, therefore, may be to implement a reference monitor
that scrutinizes such cross-module accesses.

To gain deeper insights as to the nature of the observed
cross-module accesses, we used Intel’s Pin tool to trace
the source module of each data access, as well as the
target module (i.e., which module’s data section was being
accessed). Our evaluations show that cross-module data
accesses account for over 6% of all benign data accesses we
observed in Internet Explorer 11. Similar percentages were
observed for Adobe Reader XI. Thus, these results indicate
that if these cross-module data access are disallowed, then
that might be a solution to curtailing the attacks in this paper.
To be fair, at the time of this writing, it is unclear (to us)
how much refactoring of complex code would in fact be
needed in order to disallow cross-module accesses in the
studied applications.

Alternatively, a so-called micro-service architecture may
offer more well-defined inter-module sandboxing. For in-
stance, each module could run as a separate process with
inter-module communications routed through remote proce-
dure calls. This would, of course, prevent an attacker from
following module linkages, as address spaces are completely
separated. However, this micro-service architecture would
require significant code refactoring and there is no obvious
method of automating this effort. Thus, we further examined
an alternative path that can be used in the near term.

7.2. Global Variable Randomization

A different strategy is to thwart memory cartography
altogether by effectively destroying the map. In short, an
adversary cannot overwrite or disclose target data if nav-
igating to that location from the initial disclosure point
is not possible. Recall that the mapping technique takes
advantage of the fact that global variables in shared libraries
often contain pointers to the code or data of other modules.
For example, data is referenced between modules when
global data is used in cross-module function parameters,
while code may be referenced between modules as event
handler parameters. Since global variables are always stored
at the same relative offset within a particular library’s data
section, the adversary can map out the offsets of useful inter-
module code and data pointer variables offline, then use
those same fixed offsets at runtime to identify the correct
global variables used in the memory mapping step.

To thwart an attacker’s ability to utilize memory map-
ping strategies, we explored the design of a new defensive
strategy, dubbed global variable layout randomization. In

short, the idea is to randomize the order of each global
variable in the library (or binary) data section each time that
module is loaded. Conceptually, by randomizing variable or-
dering, the adversary cannot predict the location of variables
that contain pointers to other modules, thus thwarting the
memory mapping phase.

To provide a solution that could work with commodity
binaries, we decided to investigate a binary-level solution.
However, randomizing variables at the binary-level pre-
sented several non-trivial challenges, including (i) determin-
ing the location and size of each variable, (ii) re-writing code
to correctly reference relocated variables, and (iii) creating
either a new randomized binary or instrumenting operating
system loaders to perform randomization in-line as modules
are loaded. The first two challenges were addressed by lever-
aging module metadata which gives information about both
where code accesses global variables and, through binary
code analysis of those locations, how those variables are
accessed. When source-code is available, this task would be
greatly simplified. Additionally, in our proof of concept, we
choose to rewrite the PE headers to create a new randomized
binary instead of performing the randomization in-line. We
leave in-line randomization as an exercise for future work.

7.2.1. Details. Specifically, we first use public debug sym-
bols for each module to obtain a list of variable locations and
sizes. Unfortunately, some private variables are not present
in these symbols. Hence, our prototype only randomizes
those variables readily available in public symbols. Devel-
opers could opt-in to sharing the necessary information. One
caveat introduced by the unavailability of private symbols,
however, is that we need to ensure they are not accidentally
randomized, as we have no way of discerning their location
or size. To address this issue, we perform an in-place
randomization, wherein we catalog all available symbols
into slots reflecting their size, then randomly swap same-
sized variables. In doing so, we guarantee that no undefined
(but possibly used) bytes are moved, while still ensuring
that known variables are randomized with n! permutations,
where n is the number of variables in that slot size. We note
that this limitation is alleviated when this same concept is
applied at the source level, or in collaboration with develop-
ers releasing the appropriate location and size information.

Once global variables are randomized, the next step is to
update references to those variables in the binary. Code will
access .data section variables using an absolute reference
(as opposed to a relative reference), and data structures that
contain references to global variables use absolute references
as well. This is fortunate, as binaries contain a relocation
table that identifies every absolute reference (in data or
code) in the binary. We update each relocation entry that
references a randomized global variable to point to the
updated variable address.

We prototyped this approach by implementing a custom
symbol parser to obtain the necessary symbol informa-
tion and a binary rewriter to apply the randomizations to
PE files on-disk. Firefox and Google Chrome have pub-
lic symbol information available, and we found that 67%
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of chrome child.dll variables and 38% of xul.dll variables
could be randomized with this swapping approach alone. In
both cases, however, the remaining variables are all unique
in size and hence could not be swapped in-place. That said,
the vast majority of these remaining variables are strings,
and hence of limited utility to an attacker attempting to reach
additional modules.

Still, when attempting to evaluate the effectiveness of
this approach against our attacks, we observed that more
than half of the discovered paths in the module where the
initial memory disclosure takes place remain unaffected.
Consequently, an attacker anticipating this randomization
defense may choose to reach only data accessible through
unaffected paths. We speculate that this low percentage re-
sults from the fact that it is hard to gain reliable information
about structs in memory. Our preliminary approach does
not assume comprehensive debug symbols, without which
we are forced to treat all structs as opaque blocks of data.
Consequently, we can only safely swap objects of the same
size, leaving objects of distinct sizes untouched.

Given this observation, a possible solution to improve
the randomization coverage is variable relocation, whereby
all identified variables in the .data section are moved at
random locations within a new section in the executable. By
not being able to predict or infer the order of the randomized
variables, any leaked pointer into the new section will leave
the attacker disoriented. Given that it is possible to safely
relocate all variables, this approach will break all cross-
module linkages from the module where the initial memory
disclosure occurs. We plan to implement and evaluate this
improved scheme as part of our future work.

7.3. Other Defenses

Other possibilities might be to better leverage data-
flow integrity [20] with complete mediation on memory
accesses [34] (for example, to mitigate data-only TOCTTOU
abuses like those in §6) to support stronger policies for data.
Practical data-plane randomization [8, 23] might also make
it more difficult to perform heap feng-shui. Undoubtedly,
implementations of the aforementioned defenses will cer-
tainly increase runtime overhead [54, 61], but in our view,
the price seems worth the benefits. Unfortunately, a deeper
analysis of tradeoffs in the design and implementation of
these techniques is beyond the scope of this paper.

8. Conclusion

In this paper, we introduced a new data-only technique
for mapping memory at runtime, and show how that knowl-
edge can be used to undermine the security of modern
browsers. Our findings regarding the power of data-only
attacks highlight the fact that the lack of proper site isolation
in modern browsers undermines many of the efforts made
over the past decade to mitigate classes of cross-origin
web-based attacks (e.g., cross-site request forgery, reflected
XSS, click-jacking, cross-origin resource import) [22, 56].
To address this serious threat, we also proposed first steps

towards defensive measures, including global variable ran-
domization. It is our hope that the work in this paper will
encourage others to explore additional defenses against data-
only attacks before these attacks become far more prevalent.
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