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ABSTRACT

Gaining reliable arbitrary code execution through the exploita-

tion of memory corruption vulnerabilities is becoming increasingly

more difficult in the face of modern exploit mitigations. Facing this

challenge, adversaries have started shifting their attention to data

leakage attacks, which can lead to equally damaging outcomes,

such as the disclosure of private keys or other sensitive data.

In this work, we present a compiler-level defense against data

leakage attacks for user-space applications. Our approach strikes

a balance between the manual effort required to protect sensitive

application data, and the performance overhead of achieving strong

data confidentiality. To that end, we require developers to simply

annotate those variables holding sensitive data, after which our

framework automatically transforms only the fraction of the entire

program code that is related to sensitive data operations. We imple-

mented this approach by extending the LLVM compiler, and used

it to protect memory-resident private keys in the MbedTLS server,

ssh-agent, and a Libsodium-based file signing program, as well as

user passwords for Lighttpd and Memcached. Our results demon-

strate the feasibility and practicality of our technique: a modest

runtime overhead (e.g., 13% throughput reduction for MbedTLS)

that is on par with, or better than, existing state-of-the-art memory

safety approaches for selective data protection.
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1 INTRODUCTION

The continuous deployment of exploit mitigation technologies has

made vulnerability exploitation much more challenging than it

was only a decade ago [87]. It is all too telling that contestants of

the first Pwn2Own competition were individual researchers who

discovered vulnerabilities and wrote reliable exploits in a matter

of hours [37], while the winners of recent contests comprised sev-

eral teams, many of whom worked for months to develop a single

exploit [38]. Besides the widespread adoption of non-executable

memory pages [71] and address space layout randomization [70],

the principle of least privilege is better enforced in user accounts

and system services, compilers apply more protections against

buffer overflows, sandboxing is increasingly used in applications

that render untrusted input, and control flow integrity [10] and

other exploit mitigations have become commonplace in commodity

operating systems [1, 4, 31, 69, 87]. Additionally, realizing the impor-

tance of (and demand for) efficient exploit mitigations, CPU vendors

have begun providing primitives that facilitate the development of

lightweight and effective mitigations [19].

That said, the increasing complexity of reliably achieving ar-

bitrary code execution, along with high-profile incidents of data

leakage vulnerabilities (such as Heartbleed [3]), has prompted a

renewed interest into data-only attacks [35, 60, 74, 81], which were

first introduced more than a decade ago [29]. For instance, armed

with an arbitrary memory access capability, adversaries can simply

focus on leaking a user’s HTTP session cookies for cloud storage,

email, e-commerce, and other online services [74].

With the emergence of data-only attacks, protecting the data of

a process, in addition to its code, is of paramount importance. To

date, memory safety [12, 13, 27, 43, 64, 65], data flow integrity [28],

data space randomization [24], privilege separation [26, 73], en-

claves [42], and sandboxing [34, 45, 86, 91] have been proposed as

solutions for protecting in-process data from corruption or illegal

access. In practice, however, their deployment for the protection of

end-user applications has been limited, due to either their high run-

time overhead, or the significant code restructuring effort required.

To complicate matters even more, the recent spate of microarchitec-

tural attacks that leak secrets via side channels (e.g., Spectre [44],

RIDL [84], and Fallout [59]) has aptly shown that existing in-process

memory isolation technologies are not adequate for preventing sen-

sitive data leakage.

In this paper, we propose a practical approach for countering

data leakage attacks against user-space applications. The core idea

stems from the observation that, depending on the application, some

data is more critical than others. By focusing only on a subset of

data, we can achieve a low-enough runtime overhead by amortizing

the cost of the protection mechanism, while offering strong data

confidentiality. Sensitive data is always kept encrypted in memory,
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and is decrypted only while being loaded into registers for carrying

out computations. Similarly, the secret key state used to encrypt

and decrypt sensitive data is always stored only in registers, and in

particular in the AVX2 [9] registers that have been available since

2013 (introduced in the Intel Haswell architecture). Consequently,

even if attackers can repeatedly read arbitrary memory (e.g., by

exercising an arbitrary read primitive through malicious JavaScript

code), any leaked sensitive data will always be encrypted.

We implemented our solution on top of the LLVM compiler, and

rely on whole-program pointer and data flow analysis at the LLVM-

IR level to pinpoint all the code points that access sensitive data, and

instrument them appropriately. A core design goal is to minimize

the effort needed to protect an application, by requiring developers

to just annotate only any initial sensitive data or data sources (e.g.,

cryptographic keys, passwords, HTTP session cookies) without the

need for further source code modifications. Sensitive data is often

not heavily propagated, thus limiting the performance overhead

associated with cryptographic operations. As such, we can protect

sensitive data with limited program instrumentation.

We empirically assess the practicality of our technique using a

set of microbenchmarks and real applications. Our results show

that the runtime overhead is modest (e.g., 13% throughput reduc-

tion for the MbedTLS SSL server when protecting its private key),

achieving performance that is on par with or better than existing

state-of-the-art memory safety approaches for selective data pro-

tection [27]. An additional benefit compared to existing memory

safety and data isolation approaches is that it offers protection

against recent microarchitectural attacks that rely on speculative

execution [44], as any leaked data always remain encrypted. At the

same time, our work highlights important challenges in the front

of whole-program fine-grained pointer analysis that leave room for

significant improvement once resolved.

Our work makes the following main contributions:

• Wepropose a compiler-level defense against sensitive data leak-

age attacks for user-space applications. Using whole-program

pointer and data flow analysis, our technique instruments only

the fraction of the program code needed to keep sensitive data

always encrypted in memory.

• An implementation on top of LLVM that requires only minimal

developer intervention in the form of simple code annotations

to protect the confidentiality of sensitive application data.

• An in-depth assessment that shows that we can achieve our

goals with modest runtime overhead.

• An evaluation against a publicly available Spectre proof-of-

concept attack, which demonstrates how our approach protects

sensitive data against microarchitectural side-channel attacks.

2 BACKGROUND AND MOTIVATION

After a decade-long hiatus since the introduction of data-only at-

tacks [29], several advancements that demonstrate their power have

been brought to light [35, 40, 41, 60, 61, 74, 81]. These works take

advantage of memory disclosure vulnerabilities to access arbitrary

memory and subsequently provide adversaries with powerful ca-

pabilities [15, 22, 46, 48, 52, 77]. Heartbleed [3] is a recent example

that demonstrates how the ability to read arbitrary memory can be

used to leak sensitive application data, such as private keys.

To protect sensitive in-memory data from leakage, it is thus im-

portant to consider the adversarial capabilities enabled by memory

disclosure vulnerabilities, especially when combined with scripting

support [74]. Unfortunately, application sandboxing protections

(or sandboxing policies enforced through SFI [86], XFI [34], or data

sandboxing [91]) cannot protect against these attacks, as data leak-

age still occurs within the enforced boundaries. On the other hand,

stricter data isolation policies, such as data flow integrity (DFI) [28]

do protect against data-only attacks, but incur a prohibitively high

runtime overhead (e.g., 104% for the SPEC benchmarks).

Another mitigation against data-only attacks is to change the rep-

resentation of in-memory data, by always keeping it transformed

and restoring its original representation only when it needs to take

part in some computation. As an initial exploration of this idea,

Bhatkar and Sekar [24] proposed an approach for XOR-ing data

objects with a random per-object łkeyž that is kept alongside each

object in memory. Under the stronger disclosure-aided exploitation

threat model, however, this form of data space randomization does

not offer adequate protection, as the key cannot be kept secret.

Moreover, the runtime overheadÐdue to the necessity of XOR op-

erations before and after each and every memory access to each

and every objectÐis prohibitively high.

In this work, we revisit the idea of data space randomization,

but with the goal of achieving stronger protection even under arbi-

trary memory read capabilities. As simple XOR-ing can be defeated

by comparing known data with its transformed version, we use

stronger encryption without introducing substantial computational

overhead [58]. To that end, we leverage the AES-NI instruction set

extensions for hardware-accelerated AES computations, along with

the AVX2 [9] registers for storing the expanded round keys for each

AES operation.

In comparison to existing memory safety and data flow integrity

approaches, which instrument the entire program to prevent ar-

bitrary access to the protected data, our sensitive data protection

approach instruments only the fraction of instructions involved

in sensitive data flows and operations, and ignores the rest of the

memory-related instructionsÐthese may still illegally access the

protected data, but only in its encrypted form.

In comparison to existing approaches based on privilege sepa-

ration [26, 73], hardware-based protection [36, 62, 85] or enclave

solutions like SGX [17, 25, 53, 76, 82], our approach does not require

any code refactoring or rewriting, besides a simple annotation of

existing data variables or data sources.

3 THREAT MODEL

We consider the broad class of memory disclosure or corruption

vulnerabilities that give adversaries the capability to read (i.e., leak)

arbitrary user-space memory. We assume that due to the nature of

the vulnerability (e.g., as was the case with Heartbleed [3]), or due

to the deployment of exploit mitigation mechanisms, immediate

arbitrary code execution is not possible, and thus the adversary is

constrained in mounting some form of data-leakage attack. The

attack may be facilitated by the execution of malicious script code

that leverages the disclosure vulnerability to repeatedly access arbi-

trary memory [74]. Because adversaries do not have arbitrary code
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execution capabilities, however, they cannot disclose the sensitive

data and the expanded round keys stored in registers.

Although the end goal of some advanced data-only attacks is to

modify configuration or control data [35, 61], our approach is tai-

lored to defending against data leakage attacks, which still comprise

an important sub-class of data-only attacks [3, 74]. In this work, we

focus on maintaining the confidentiality of sensitive data, but the

integrity of such data may not be fully protected. Specifically, the

encryption scheme we utilize offers some level of protection against

data modification attacks, but cannot prevent certain attacks that

rely on replacing data with other already encrypted values. We

discuss in detail such attacks, along with the challenges of fully

guaranteeing data integrity, in Section 7.

We focus on the protection of user-space applications, and thus

assume that adversaries do not have access to any kernel-level

code or data. Nonetheless, we assume that the attacker can perform

cold boot attacks. Because all sensitive data is present in RAM

in encrypted form, and the secret round keys are present only

in registers, the attacker can not recover the plaintext by simply

reading the physical memory.

With respect to the recent wave of CPU side channel attacks

that allow arbitrary memory access from user space, our solution

does not protect against Meltdown [54], as protecting kernel at-

tacks is out of scope. However, it does offer effective protection

against Spectre [44] and similar microarchitectural attacks based

on speculative execution. Spectre attacks leak arbitrary data that

has been loaded into the cache within the scope of a user-space

process. Thus, these attacks will access protected data only in its

AES-encrypted form.

4 DESIGN

The proposed approach aims to strike a balance between themanual

effort required to enable the protection of sensitive application data,

and the performance overhead of the data protection mechanism

itself. Existing application-level isolation technologies such as priv-

ilege separation [26, 73], enclaves [42], and sandboxing [34, 86, 91],

have a relatively low performance impact, but require an immense

code refactoring effort. As part of this process, one must identify

and move the sensitive data (and all associated critical-path code)

into the protected domain, and implement appropriate interfaces

with the rest of the application code.

By contrast, we merely require developers to annotate sensi-

tive data in the source code, without requiring any further code

modifications. Before any computation is performed, the data is

first decrypted and stored in a register, which is the only location

in which plaintext sensitive data is ever exposed. A decryption

łboundaryž is defined at the system call level, to allow for seamless

interaction with the OS or inter-process communication by supply-

ing decrypted data to domains outside the reach of an attacker. To

achieve these capabilities, several challenges must be addressed:

(1) The whole code of the process must be considered, including

the main application and all its libraries.

(2) All pointers that may reference a sensitive object must be iden-

tified and handled accordingly.

(3) Data marked as sensitive may propagate to other (non-marked)

variables and objects.

(4) The unit of encryption for AES is 128 bits, but sensitive data

objects may be smaller or larger than that.

Our design is centered around addressing the above challenges. In

the rest of this section, we describe the different types of analysis

and code transformation required for protecting a given application.

4.1 Whole-Program Analysis

To ensure that sensitive values are never left decrypted in memory,

our approach must analyze and transform the whole program code,

including any external libraries, because sensitive data might be

passed as arguments to functions in these external libraries. This re-

quires the source code of the application and all dependent libraries

to be available for analysis and transformation.

Performing whole-program analysis at the source code level is

difficult, as merging the source code of different libraries may result

in clashes due to identically named static functions and variables.

To avoid these issues, we opt for merging the code object files after

LLVM transforms them to their intermediate representation (IR),

at which point any identically named static functions are automati-

cally renamed. Moreover, operating at the IR level gives us access

to LLVM’s sophisticated analysis and transformation capabilities

available at this level. Also, ensuring that the sensitive data remains

protected through the LLVM backend passes requires interfacing

with them, and operating at the IR level makes this easier.

Link time optimization gives LLVM the capability of dumping

the IR of a compilation unit on disk. This allows the IR of multiple

compilation units to be optimized as a single module. The LLVM

toolchain provides the necessary tools to generate static libraries

from these IR units, thus allowing link time optimization of the

application along with its library dependencies.

4.2 Pointer Analysis

Once the programmer annotates an object or a variable as sensitive,

every valid access to these objects must be transformed with the

appropriate encryption or decryption routines. Given the heavy

reliance of C and C++ code on the use of pointers, we must first

determine which pointers may hold references to sensitive objects,

so that the respective pointer dereference operations can be also

transformed accordingly. To that end, as part of the static analysis

performed at the IR level, we employ pointer analysis to resolve all

possible memory objects that a pointer might refer to.

4.2.1 Sensitive Data Domain. The LLVM optimization phase al-

ready provides implementations of various pointer analysis al-

gorithms. However, these implementations support only intra-

procedural analysis capabilities, which are not adequate for our

purposes. Instead, we use an inter-procedural version of Andersen’s

algorithm [14]. This well-known flow-insensitive pointer analysis

algorithm examines pointer-related statements one by one, and

updates a points-to graph with any newly found points-to rela-

tionships. Each node of the graph represents either a pointer or a

memory object, and each edge represents a points-to relationship.

Figure 1 shows a small C code example and its corresponding

points-to graph. The points-to set of pointer ptr1 includes the

variables a, b, and the array arr, but only variable a has been

annotated as sensitive. Because ptr1 can point to any of the objects

in its points-to set, we must treat all three variables as sensitive.
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arra b c

Sensitive Data Domain

ptr1 ptr2

1 void fun1(void) {

2 SENSITIVE int a;

3 int b, c;

4 int arr [10];

5 int *ptr1 , *ptr2;

6

7 ptr1 = &a;

8 ptr1 = &b;

9 ptr2 = &b;

10 ptr2 = &c;

11

12 for (int i = 0; i < 10; i++) {

13 ptr1 = &arr[i]; ...

14 }

15 }

Figure 1: Example C code with an integer variable marked

as sensitive (line 2), and the corresponding points-to graph.

Moreover, once we mark variable b as sensitive, ptr2 (which points

to b) must also be marked as sensitive, and in turn, variable c

becomes sensitive as well.

These relationships form an equivalence class of sensitive data,

which we call the sensitive data domain, depicted in the upper part

of the points-to graph. This example illustrates one of the major

challenges we facedÐthat is, the results of pointer analysis are in

general an over-approximation of the actual relationships among

objects, which consequently results in an over-approximation of the

actual sensitive data domain. Ideally, we would like our analysis to

havemaximumprecision tominimize the instrumentation overhead.

Unfortunately, higher degrees of precision usually entail longer

computation time for the analysis, and in certain cases, may give

rise to other challenges specific to our use case.

4.2.2 Field Sensitivity. Field sensitivity [18, 72] is an approach for

improving the precision of pointer analysis, and refers to the ability

of the analysis algorithm to distinguish between individual fields of

a complex object, such as a C struct. This is particularly important

in case of complex objects containing multiple pointers that may

point to distinct sets of objects in memory. Unlike field-insensitive

analysis, field-sensitive analysis treats each of these pointers (of

the same complex object type) as distinct. Field-sensitive pointer

analysis is thus more precise than field-insensitive analysis, and

would result in a smaller sensitive data domain.

Using field-sensitive analysis for protecting sensitive data is by

no means an easy feat. Numerous challenges abound. For one, while

the block size for AES operations is 128 bits, the individual fields

of a struct object will often not be aligned at 128-bit boundaries,

requiring extra padding and alignment. We describe this and other

related challenges in detail in Sections 4.4 and 5.1.3. As shown by

our experimental evaluation, switching to field-sensitive analysis

resulted in a considerable reduction of the overall runtime overhead

compared to field-insensitive analysis.

4.3 Value Flow Analysis

Resolving all pointer references is not enough to achieve complete

data protection, as sensitive data may propagate to other variables

and objects, which we call sensitive sink sites. To prevent potential

information leakage through them, we use value flow analysis to

recursively find all such sensitive sink sites. All memory accesses

to these sites are then instrumented with appropriate encryption

or decryption transformations.

To correctly track sensitive value flows through function calls, we

first resolve the targets of function pointers using the information

generated from the prior pointer analysis phase, which allows for

the creation of a sound call graph. Having the call graph, we can

then track sensitive values passed as arguments to other functions,

as well as any sensitive values returned by functions. Sensitive

value flows can be direct or indirect. Indirect flows occur due to

the presence of pointers. Due to the reliance on the prior pointer

analysis phase for resolving the targets of pointers, our value flow

analysis is also affected by the precision of the pointer analysis.

The combination of pointer and value flow analysis gives us the

full set of sensitive data objects that must be kept encrypted in

memory, and the corresponding code instrumentation points.

4.4 In-Memory Data Protection

Once all memory objects in the sensitive data domain have been

discovered, as a result of the pointer and value flow analysis phases,

the final step is to instrument the respective memory read and write

operations with calls to custom decryption and encryption routines.

We opted for the strong data confidentiality that AES [30] offers, to

avoid the risk of cryptanalysis-based attacks that an adversary could

mount through script code (or even offline). Modern processors

offer native support for accelerating AES operations, e.g., as is the

case with Intel’s AES-NI extensions [39].

A major engineering challenge we faced stems from the fact

that the basic unit of operation for AES is 128 bits, but sensitive

scalar values may be 8, 16, 32, or 64 bits in length, while data

objects such as private keys, passwords, and configuration-related

data structures, are often larger than 128 bits. The frequent size

mismatch between objects and AES block size prevents us from

applying AES directly to protect individual objects. Dealing with

smaller objects is relatively straightforward by padding them to 128

bits, although this entails several implementation considerations for

different types of memory (global, stack, heap), which we discuss in

Section A.1 of the appendix. On the other hand, dealing with larger

objects unavoidably requires processing them in 128-bit blocks. In

both cases, objects are 128-bit aligned to optimize memory offset

computations.

Decrypted Data Cache. To optimize the common case of repeated

accesses to the same data, we implemented a decrypted data cache

to minimize the number of cryptographic operations over time for a

given block. Our requirement of never exposing plaintext sensitive

data in memory explicitly rules out the possibility of using any

memory-resident buffer for this purpose. However, we can take

advantage of spare CPU registers to temporarily hold decrypted

dataÐleaking register contents requires the execution of arbitrary

(i.e., non-instrumented) code, which (based on our threat model,

discussed in Section 2) falls outside the attacker’s capabilities.

The x86 Streaming SIMD Extensions provide support for 16 128-

bit registers (named XMM0 to XMM15) in 64-bit processors (or eight

128-bit registers in 32-bit processors). When accessing a sensitive

value frommemory, we first decrypts the 128-bit block that contains

the sensitive value, and loads it into the XMM0 register. In case of

601



a read operation, the respective byte/word/double-word is copied

from the XMM0 register to the required general purpose registerÐ

after that point, all arithmetic or logical instructions that follow the

memory read proceed unchanged. In case of a write operation, the

new value of the required byte/word/double-word is written in the

appropriate offset in the XMM0 register.

Instead of immediately clearing the XMM0 register, the decrypted

contents are retained for as long as possible. Any subsequent ac-

cess to the same block can be directly accommodated from the

already decrypted contents of the XMM0 register. When a sub-

sequent sensitive memory operation accesses a different 128-bit

block, the current block is re-encrypted and written back to mem-

ory before proceeding. The register is also re-encrypted and written

back before calls to any external interface. This simplified caching

approach takes advantage of the locality of data accesses to reduce

the overhead of repeated AES operations on the same data.

5 IMPLEMENTATION

The Clang frontend translates C/C++ code to the LLVM interme-

diate representation, which is then lowered into assembly by the

LLVM backend. LLVM provides a powerful and expressive frame-

work for analysis and transformation at the IR level, and thus most

of our implementation was performed at that level. The LLVM IR

also simplifies the high level C/C++ code to enable efficient code

transformations and analysis.

The LLVM compiler toolchain is modularized into several passes,

with most of the passes operating at the IR level. Each pass car-

ries out a single analysis or transformation task. We implemented

pointer analysis and value flow analysis as two separate analysis

passes, and the final AES instrumentation as a transformation pass.

Figure 2 illustrates how the different phases are integrated into the

LLVM toolchain.

The Clang frontend lowers the SENSITIVE annotation to a call

to the llvm.var.annotation function, which takes as arguments

the objects that were annotated as sensitive. We first collect these

arguments to find the initial set of sensitive objects. Then, at the IR

level, this set of objects becomes the starting point of our analysis

and transformation passes.

5.1 Link Time Optimization

We modified LLVM to invoke our analysis and transformation

passes during the LTO phase, which enables us to support static

libraries and standalone applications. This also has the additional

benefit of not requiring any modifications to Makefiles, except for

passing custom values to environment variables, such as CC, AR,

RANLIB, and CFLAGS.

5.1.1 Pointer Analysis. To perform whole-program analysis, we

extended the the Static Value Flow (SVF) analysis framework [80],

which supports pointer analysis and program dependence analysis

for C and C++ programs. SVF first analyzes the LLVM IR instruc-

tions in the merged IR and gathers constraints that model the flow

of pointers in the program. These constraints are represented in

the form of a constraint graph. Then, using an inter-procedural

Andersen’s style pointer analysis algorithm [14], SVF iteratively

performs pointer analysis by performing a reaching analysis on

this constraint graph, followed by call graph construction. Each

iteration of pointer analysis may discover new function pointer

targets, and therefore updates the call graph with new call edges.

Each new edge in the call graph may expose new pointer flows,

thus requiring the pointer analysis to be repeated. This iterative

execution continues until no new edges are added to the graph, i.e.,

until reaching a łfixed point.ž

SVF ensures that the result of the pointer analysis is sound. The

pointer analysis provided by SVF is field-sensitive. As discussed in

Section 5.1.3, field-sensitive analysis results in individual fields of

a structure becoming sensitive. This causes problems because the

AES unit of encryption is 128 bit, and individual fields are often

neither aligned to 128 bits, nor 128 bit wide. Therefore, in addition

to the field-sensitive version that handles these complex struct-field

alignment cases, we also implemented a simpler field-insensitive

version. For this, we modified the processing of constraints so

that accesses to individual fields of complex objects are treated

as accesses to the entire object. As discussed in Section 4.2.2, this

field-insensitive pointer analysis results in an over-approximated

sensitive data domain, but provides a simpler implementation alter-

native and does not require widening and aligning of the individual

fields of structures.

Using the results of the pointer analysis, we populate two maps:

pointsToMap, which maps pointers to their possible targets, and

pointsFromMap, which maps objects to pointers that may point to

them. Once the results of the pointer analysis and the value flow

analysis are available, we construct the equivalence class for the

sensitive pointers and objects. The pseudo-code for this process is

provided in Algorithm 1 in the appendix.

5.1.2 Value Flow Analysis. As discussed in Section 4.3, data of

objects marked as sensitive may be copied and stored to other

objects (sink sites). Given that these objects must remain encrypted

in memory, we perform interprocedural value flow analysis to find

them and instrument them appropriately.

The LLVM instructions LoadInst and StoreInst are used to

read from and write to memory, respectively. For the purposes

of our value flow analysis, we track the flows that begin from a

LoadInst reading a sensitive object, and terminate in a StoreInst

writing to a non-sensitive object. As discussed earlier, SVF repre-

sents the constraints required for points-to analysis in the form

of a constraint graph, which it then solves to resolve the targets

of every pointer in the program. We leverage this graph, and add

edges corresponding to the value flows caused by LoadInst and

StoreInst. After the points-to analysis is complete, we perform a

breadth-first graph traversal to derive the sensitive sink sites. Be-

cause the solution of the SVF constraint graph contains the targets

of function pointers, we can trivially track inter-procedural value

flows even in the presence of function pointers.

The results of the pointer analysis are used to track indirect

sensitive value flows through pointers. We first find which pointers

might point to sensitive objects. Then, we perform value flow anal-

ysis on the values defined by LoadInst instructions that perform

an indirect memory read using these pointers.

5.1.3 Partially Sensitive Complex Objects. Field-sensitive points-

to and value flow analysis may cause individual fields of struct-

type objects to become sensitive. This creates a problem because

these individual fields are often smaller than 128-bits long. One
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Figure 2: Overview of our sensitive data protection approach as implemented in LLVM.

solution could be to align all fields of such a partially-sensitive

struct-type objects to 128 bits, but this has the risk of degrading

cache performance, as the individual fields of the objects would be

spaced further away in memory. To minimize performance impact,

we align only those fields of a struct that are sensitive to 128-bit

boundaries, and also pad them to 128-bit size.

A second challenge is the use of the sizeof operator, which

allows the programmer to retrieve the allocation size of an object

in memory. This operator is lowered by the Clang frontend into

constants according to the object size, before the IR is constructed.

With our approach, however, the correct size of partially sensitive

objects becomes available only after alignment and padding, which

is performed at the IR level. We address this issue by modifying

the Clang frontend to append each instruction that uses a sizeof

operator with custom metadata (passed on to the IR level) that

includes the struct type on which the sizeof operator was applied.

Once the points-to and value flow analysis have completed, we

revisit these instructions and recalculate the sizes of any struct-

type objects based on the alignment and padding of their sensitive

fields. We then fix up the constants corresponding to the sizeof

operators with the recalculated sizes.

5.1.4 Memory Encryption Transformations. The Sensitive Data Do-

main contains the set of memory objects that must be kept en-

crypted in memory. This set includes global objects, objects on the

heap, and objects on the stack, which in LLVM IR are represented by

GlobalVariable, CallInst, and AllocaInst class objects, respec-

tively. First, we use the pointsFromMap provided by the pointer

analysis to find all sensitive pointers that might refer to these ob-

jects. Then, we collect all LoadInst and StoreInst instructions

that read and write to sensitive objects in memory, either directly

or via sensitive pointers. These instructions must be rewritten to

decrypt or encrypt the sensitive objects. We present the details of

this code transformation phase in Section 5.1.5 below.

To apply these cryptographic transformations, objects must be

128-bit aligned, while global variables with default initializers, con-

stant values, and environment variables within the sensitive data

domain, must be initialized to the correct encrypted values. We

handle these special cases by adding the correct transformations to

the IR. To ensure that sensitive values read from memory remain

protected during the subsequent stages of the compilation process,

we add a SENSITIVE metadata tag to the values defined by the

LoadInst instructions, which is propagated to the LLVM backend.

5.1.5 Hardware-accelerated AES and Key Protection. Intel proces-

sors provide the aesenc, aesenclast, aesdec, and aesdeclast

instructions (as part of the AES-NI extensions) to speed upAES oper-

ations. The latest Intel processors also support the Streaming SIMD

Extensions (SSE) [6] and the more recent, Advanced Vector Exten-

sions (AVX) [56]. Intel SSE provides 32 128-bit registers (XMM0ś

XMM15), and AVX widens them to 256 bits (YMM0ÐYMM15). Intel

SSE also includes instructions for writing and reading individual

8/16/32/64 bytes from XMM registers (pinsrb, pinsrw, pinsrd,

pinsrq, and pextrb, pextrw, pextrd, pextrq, respectively). Sim-

ilarly, AVX includes instructions for reading individual 128-bit

chunks from the YMM registers (vinserti128 and vextracti128).

We use these instructions to perform cryptographic operations

oblivious to memory leakage. Using a 128-bit key with AES requires

10 processing rounds, each consuming four words (128 bits) from

the key schedule (derived from the initial 128-bit key), also referred

to as łround keys.ž Before any round-based processing begins, the

input value is XOR-ed with the first four words of the key sched-

ule (for a total of 11 four-word keys). To avoid the overhead of

generating the round keys from scratch before each AES opera-

tion, they should ideally be pre-generated from the initial secret

key, and stored in registers [45, 58]. To protect these round keys

from memory disclosure vulnerabilities, the code that loads them

into registers is placed on its own 4KB page, which is zeroed out

immediately upon its execution.

Storing all the round keys in registers would require 22 128-bit

registers. Processors with AVX support provide access to 16 256-bit

registers, which can be accessed independently as 32 128-bit regis-

ters. However, Libc and other libraries rely on XMM registers to

perform optimizations such as loop unrolling. To maintain compat-

ibility with such optimizations, we use only the 15 YMM registers

to store all ten expanded encryption round keys, a subset (four)

of the expanded decryption round keys, and the single XOR key.

Decryption round keys are the inverse of the encryption round

keys, and Intel provides the aesimc instruction to compute the

decryption round key, given its encryption counterpart. Per Intel’s
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documentation, we use this instruction to compute the remaining

six decryption round keys on the fly as needed.

As noted earlier (Section 4.4), we use the 128-bit XMM0 register

as our decrypted data cache. We use the SSE instructions to read

or write individual values in an already decrypted block stored in

XMM0, and load the AES round keys into the XMM1 register.

The logic for loading the keys into registers is encapsulated in

a function named populate_keys. To effortlessly rotate the keys

upon each new program invocation, we rely on the binary analysis

and rewriting capabilities of Pyelftools [21], which we used to

implement a custom program that replaces all instances of the

old encryption and decryption keys with new user-provided (or

randomly generated) values.

5.1.6 Handling Common Libc Functions. Functions such as strcpy,

strlen, strcmp, and their memory counterparts memcpy, memcpy,

and memset, are utility functions that are invoked with a variety

of arguments. Some of these arguments are sensitive, while others

are not. If we were to mark the arguments to these functions as

sensitive, then any invocation with even a single sensitive argument

would require the other non-sensitive arguments to also be included

in the Sensitive Data Domain, as discussed in Section 4.2.1. This

would cause these other arguments to also be marked as sensitive

and be encrypted in memory. This would increase the performance

overhead as they would have to be decrypted to be computed on.

We solve this challenge by providing custom sensitive and non-

sensitive implementations of these commonly used functions. For

example, if the Libc function strlen is invoked at two places, once

with a sensitive string, and once with a non-sensitive string, the

first instance will invoke the sensitive implementation of strlen.

This version decrypts every byte of the string, as it checks for

the NULL termination character. The other invocation will invoke

the vanilla implementation of strlen. This approach prevents the

over-approximation of the Sensitive Data Domain, and the resulting

additional performance overhead.

5.2 LLVM Backend

The LLVM backend lowers the IR to assembly code. We propagate

the sensitive metadata associated with every sensitive IR value

through the different phases of this lowering process. Instruction

selection and register allocation are two critical phases of this low-

ering step. Using the sensitive metadata, we made a number of

modifications to these phases to guarantee that sensitive data re-

mains encrypted in memory. We discuss each in turn.

5.2.1 Instruction Selection. One of the requirements of encrypting

sensitive data in memory is that no instruction can directly operate

on in-memory operands. However, the x86 architecture supports in-

memory operands for arithmetic and logical instructions. Directly

accessing in-memory encrypted operands, without decrypting and

storing them in registers first, will give incorrect results for the

operation. Based on our experimentation, we observed that LLVM’s

FastISel instruction selection algorithm prefers the selection of

instructions with in-register operands, over those with in-memory

operands. However, to ensure the absolute correctness of our imple-

mentation, we modified FastISel to select arithmetic and logical

instructions with solely in-register operands.

5.2.2 Register Allocation. Registers in LLVM’s IR are virtual and

infinite. As the IR is lowered to architecture-specific instructions,

virtual registers are mapped to physical architecture-specific regis-

ters. Due to the limited number of physical registers, values stored

in them may be spilled to memory. We use the metadata collected

during the memory encryption transformation (described in Sec-

tion 5.1.4), to track the virtual registers that contain sensitive values.

LLVM’s FastRegAlloc register allocation algorithm maps each

virtual register to a slot on the stack. When register pressure in-

creases, it selects a virtual register to spill on the respective stack

slot. We modified LLVM’s FastRegAlloc to encrypt the values

stored in sensitive virtual registers before spilling them their desig-

nated stack slots, and re-encrypt them when they are restored.

6 EXPERIMENTAL EVALUATION

To investigate the performance overhead of the proposed approach,

we evaluated our prototype with stress-test microbenchmarks and

five real-world applications. In the microbenchmarks, we annotate

all data used for computation as sensitive, whereas in the real-world

applications, we mark only data that is critical from a security per-

spective as sensitive. To illustrate the impact of pointer analysis

accuracy on performance, in case of the real-world applications,

we evaluate both our simpler field-insensitive implementation, as

well as the more fine-grained field-sensitive implementation. Note

that pointer analysis accuracy does not have an impact on the mi-

crobenchmarks, in which all data is marked as sensitive. In addition,

we performed experiments to verify that sensitive data always re-

main encrypted in memory, and to demonstrate how this thwarts

Spectre attacks.

Our testbed consists of a server with an Intel Xeon E3-1240 v6

processor, and a client with an Intel Xeon E5-2620 v4 processor.

Both machines run Ubuntu 16.04.3 LTS, and use Glibc version 2.23.

Single-machine benchmarks were run on the server machine.

6.1 Microbenchmarks

As discussed in Section 2, previous works on data space random-

ization [24] rely on XOR-based transformation to protect all in-

memory data. In the face of memory leakage vulnerabilities, how-

ever, strong encryption must be used to ensure data confidentiality.

Unfortunately, unrestrictedly encrypting all data in memory re-

sults in a prohibitively high runtime overhead, which we set out to

explore with a pair of worst-case microbenchmarks.

The first program computes the sum of ten billion randomly gen-

erated 64-bit integers, which are stored in a dynamically allocated

buffer that is annotated as sensitive. We measured the average CPU

user time to compute the sum across multiple repetitions, which

resulted in a runtime overhead of 390%. By inspecting the output

of the the value flow and pointer analysis, we observed that 95% of

all memory read and write operations across the whole code access

sensitive memory regions. These accesses are the main source of

the runtime overhead due to cryptographic operations.

The second program uses the quicksort algorithm on ten bil-

lion randomly generated 64-bit integers. The key difference of this

benchmark from the previous one is that its memory access pattern

is more random. We observe that close to 96% of all memory reads

and writes access sensitive memory regions. However, due to the
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Table 1: Fraction of instrumented instructions among all

memory-related instructions in the code, and all memory-

related instructions executed.

Application
Code Execution

Field Field Field Field

Ins. Sen. Ins. Sen.

MbedTLS SSL Server 31% 11% 26% 15%

Lighttpd with ModAuth 20% 5% 26% 11%

Memcached with Auth. 0.1% 0.1% ∼0% ∼0%

ssh-agent 17% 8% 8% 3%

Minisign 28% 14% 55% 27%

random memory access pattern, fewer accesses can be served from

the already decrypted contents in the XMM0 register, which re-

sulted in a higher overhead of 650%. These results clearly motivate

the need for protecting only a subset of the data.

6.2 Applications

The test cases of benchmark suites typically used for performance

evaluation, such as SPEC2006 [2], do not involve data that is clearly

sensitive. Moreover, our microbenchmark experiments show that

the cost of encrypting all data in a process using AES is prohibi-

tively high. To assess the overhead of our approach under realistic

conditions, we evaluate our implementation using five real-world

applications and libraries. We opted for a diverse set of both server

(MbedTLS, Lighttpd, Memcached) and client (ssh-agent, Minisign)

applications that handle critical user data, such as secret keys and

passwords. The size and complexity of these applications is ad-

equate for our current static analysis capabilities, and is on par

with what other alternative selective data protection solutions can

support (e.g., DataShield [27]).

6.2.1 MbedTLS Server. Our first application is the ssl_server2

server that comes with MbedTLS [7], an SSL/TLS library written in

C. We built a minimal version of the MbedTLS library, including

only the RSA and AES ciphersuites. Our modified LLVM toolchain

does not support inline assembly yet, so we disabled the use of

inline assembly in the MbedTLS configuration options.

The private key of the SSL server is stored in an object of type

mbedtls_pk_context, which we annotate as sensitive. This is the

only manual step involvedÐour LLVM-LTO toolchain then auto-

matically generates a merged IR object file, which comprises both

the SSL server and the MbedTLS library, and performs value flow

and pointer analysis to find and instrument all memory operations

that access sensitive data. In Table 1, we report both the number of

memory-related instructions that are instrumented in the code, and

the number of instrumented memory accesses executed at runtime.

Across all memory accesses, only 31%, for the naive field-insensitive

approach, and 11%, for the field-sensitive approach involved sensi-

tive memory objects, and thus had to be instrumented.

We deployed the instrumented server and the unmodified ssl_

client2 program on the server and client machines, respectively.

The client makes 500,000 consecutive requests to the server, with

each request fetching the same 200 byte HTML page. Table 2 shows

the performance overhead incurred by the instrumentation. When

the field-insensitive analysis is used, the instrumentation reduces

the throughput by 28%. Although the performance overhead is

higher than one would want in practice, the main culprit is the im-

precision of the field-insensitive pointer analysis algorithm, which

over-approximates the sensitive data domain that is protected.

When switching to the field-sensitive implementation, the over-

head is limited to only 13%, regaining the performance that was

lost due to field insensitivity. As a comparison data point, Carr and

Payer [27] reported a 35.7% overhead for a similar experiment of

applying DataShield on ssl_server2.

6.2.2 Lighttpd with ModAuth. Lighttpd is a popular, lightweight

web server. Lighttpd’s ModAuth module supports HTTP Basic Ac-

cess Authentication, a method for an HTTP user agent to provide a

username and password while making a request, which are stored

in a preconfigured file on the server. The password is loaded from

this file to the variable password_buf. We annotated this variable

as sensitive and compiled the server using our framework. Using

the hardened binary, we performed 2,000 requests to a password-

protected 1 KB web page. In case of the field-insensitive approach,

the throughput degrades by 22%, and for the field-sensitive ap-

proach, the throughput is reduced by 8%.

6.2.3 Memcached: Authentication using SASL. Memcached is a pop-

ular in-memory key-value store, used to improve web server per-

formance by caching the results of expensive database queries.

Memcached provides an authentication mechanism that can be

used to deploy it in untrusted networks, which relies on the SASL

(Simple Authentication and Security Layer) library.

For simple password-based authentication, the function sasl

_server_userdb_checkpass loads the password from the speci-

fied password file and stores it in the buffer variable, which we

annotate as sensitive. We use the hardened binary to perform 1M

łsetž and łgetž operations, which store and retrieve keys in the

Memcached server, respectively. Because the authentication step

is performed once at the time of connection establishment, each

operation is performed over a new connection and is preceded by

an authentication step. Our results show that for both approaches,

the throughput overhead of our instrumentation is negligible. This

is because there is only one pointer to the stored password, and the

password is not copied to any other memory location. Moreover,

this pointer is not part of any complex C struct, and thus both

the field-insensitive and field-sensitive approaches give the same

results. Also, the code that checks for password validity accesses

the password sequentially, maximizing the use of the AES cache.

6.2.4 ssh-agent. The ssh-agent daemon holds a user’s decrypted

private keys in memory to speed up the creation of new SSH ses-

sions, by avoiding having to type the key’s passphrase. Applications

such as ssh, scp, and git, which require access to the user’s de-

crypted private keys, communicate with ssh-agent over a Unix

domain socket to carry out the SSH authentication process.

To reduce dependencies on external libraries, we built ssh-agent

with support only for the internal crypto engine. When a user adds

a new private key, ssh-agent dynamically allocates an sshkey ob-

ject on the heap.We annotate the pointer returned by this allocation
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Table 2: Performance evaluation results. Overhead numbers

correspond to throughput for the first three servers, and

user time for the last two programs.

Application
Run-time Run-time Overhead

(original) Field Field Field Field

Ins. Sen. Ins. Sen.

MbedTLS SSL server
110s 152s 126s 28% 13%

(500,000 requests)

Lighttpd with ModAuth
37s 47s 40s 22% 8%

(2,000 requests)

Memcached with Auth.
67s 67s 67s 0% 0%

(1M Get/Set req.)

ssh-agent
450s 485s 469s 8% 4%

(2,000 user sessions)

Minisign
41s 69s 54s 68% 33%

(1GB file signing)

as sensitive. This ensures that all private keys in dynamically allo-

cated sshkey objects always remain encrypted in memory. Based

on our IR-level static analysis results, 17% (field-insensitive) and 8%

(field-sensitive) of all memory operations required instrumentation,

while 8% and 3% of all memory operations performed at runtime

were instrumented, respectively.

Using the same setup, we deployed the instrumented ssh-agent

daemon on the client machine and set it up with the user’s private

keys. Public key authentication to the server machine was precon-

figured. The experiment consists of the client making 2K logins to

the server. We measured the total time taken for the 2K logins, and

report an overhead of 8% (field-ins.) and 4% (field-sen.).

6.2.5 Minisign: File Signing using Libsodium. Libsodium [8] is a

popular library for core cryptographic routines. We chose Min-

isign [32], a client-only tool for signing files and verifying signa-

tures, as a representative application that uses Libsodium. The

private key used for file signing is stored in an object of type

SeckeyStruct.We annotated the SeckeyStruct pointer in minisign.c

as sensitive. Using the hardened binary, we performed two oper-

ations. We first signed a 1GB file using a pre-generated private

key, and then verified the signature against the file. Our results of

measuring the completion time show that for signing the runtime

overhead is 68% (field-ins.) and 33% (field-sen.), while for verifica-

tion the overhead is 57% (field-ins.) and 35% (field-sen.).

It is important to note that although the verification process does

not use the sensitive private key, it still suffers from some perfor-

mance overhead due to the imprecision of our sensitive data domain

construction, in both approaches. This imprecision causes the argu-

ments to the crypt_hash_sha512, crypt_hash_sha512_update,

and crypt_hash_sha512_final functions, which compute the

hash of the file contents, to be marked as sensitive. As these func-

tions are shared by both signing and verification operations, both

operations exhibit a performance overhead.

6.2.6 Results Summary. Our results are summarized in Tables 1

and 2. We observe that for all five applications, only a fraction of

all memory accesses had to be instrumented, and as expected, this

fraction is lower for the field-sensitive approach. The time taken

for the pointer analysis and the value flow analysis (not shown

in the table) for the five applications ranges from 20 seconds (for

Memcached) to 3 minutes 45 seconds (for Lighttpd).

The performance overhead observed in all five applications

varies significantly. The variance is clearly tied to the nature of

these applications. For instance, in the MbedTLS server case, the

bulk of instrumentation involves only the SSL handshake phase.

Data transfer incurs little overhead, and network I/O incurs no

overhead. In the ssh-agent case, the instrumentation affects only

the fetching of the decrypted private key. The rest of the SSH login

and network I/O proceeds unchanged. In the Lighttpd case, the

instrumentation affects each access, but the sensitive password

buffer is accessed sequentially, leading to amortization of the data

transformation cost over multiple accesses to the password buffer.

On the other extreme, every iteration of the core loop in Minisign

that computes the signature of the file is instrumented. Since all

operations are local, there is no expensive network I/O, and so the

overhead is significantly higher.

Although a direct comparison is not possible due to the differ-

ent hardware experimental setups, we report significantly lower

overhead than solutions based on memory safety. For example,

DataShield [27] performs a coarse-grained bounds check on all

memory accesses, with a more fine-grained bounds check for point-

ers potentially accessing sensitive data, whereas our solution re-

quires instrumenting only the required sensitive pointers. DataShield

reports a higher performance overhead of 35% for the sameMbedTLS

server application, compared to 13% for our approach. We could

not successfully compile the other applications in our test suite

with DataShield. Similarly, SoftBound [64], which applies full mem-

ory safety, incurs a 116% overhead for the SPEC benchmarks [2].

Moreover, as described in Section 6.3, our solution provides pro-

tection against cold boot attacks, as well as side-channel attacks

such as Spectre [44], because the sensitive data is present in mem-

ory only in an encrypted form, unlike in the case of approaches

based on memory safety, which only protect pointers. Additionally,

the performance overhead of our approach is comparable to the

reported overhead of official mitigations for some Spectre attack

variants [49].

6.3 Security Evaluation

As a sanity check, we verified that sensitive data is never present un-

encrypted in main memory. To that end, we used a custom program

to repeatedly scan the memory of the running process every two

seconds. The program uses the gcore tool to attach to the process

and dump its memory contents. At the end of the experiment, we

scan these memory dumps for the first and last four bytes of the

protected data. We verified that for all five applications the sensitive

data was not present in an unencrypted form in memory.

Defending against Spectre Attacks. We use a publicly available proof-

of-concept to illustrate the effectiveness of our system against Spec-

tre attacks. Figure 3 shows a simplified snippet of the vulnerable

code used. The attack begins by passing a chosen value x, so that

array1[x] point to a victim address that the attacker chooses to

discloseÐin this case, the variable named secret. The vulnerability

causes array1[x] to be loaded, and used to compute the offset into
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1 SENSITIVE char *secret = "The␣Secret";

2 void victimFunction () {

3 ...

4 if (x < array1_size)

5 y = array2[array1[x] * 4096];

6 ...

7 }

Figure 3: Simplified example of code vulnerable to the Spec-

tre attack used for our evaluation.

array2, even if the branch condition fails, that is, if x is greater

than array1_size. This results in the contents of secret to be

loaded into the cache, from where they can be leaked through side

channel attacks.

To protect the contents of secret, we annotate it as SENSITIVE.

At runtime, its contents are stored only in its encrypted form in

memory, and thus also in the hardware caches. As expected, we

verified that leaking the contents of the cache via the Spectre attack

only returns the encrypted values of the secret variable.

7 LIMITATIONS

In our approach, all loads and stores to variables annotated as sen-

sitive are protected through encryption. Hence, without knowing

the secret key, attackers cannot write any desired values to sensi-

tive variables in their correct encrypted form. However, encryption

alone does not provide complete protection against attackers who

have the capability of performing arbitrary memory writes.

For instance, consider a sensitive variable is_admin related to

some authentication operation. Such variables are often checked

as part of the program logic by comparing against łnot-zerož (e.g.,

is_admin != 0). In such scenarios, even if the variable is encrypted,

attackers can overwrite it with an arbitrary value, and achieve a

very high probability of the decrypted value being non-zero. A

possible way to address this limitation is to use a message authenti-

cation code (MAC) for authenticating writes to sensitive variables,

in order to guarantee that only authorized instructions can mod-

ify sensitive values. However, it is difficult to identify authorized

instructions, especially in case of complex data-only attacks. We

leave the exploration of more effective techniques for ensuring data

integrity as part of future work.

The dearth of efficient pointer analysis techniques directly im-

pacts the precision of our approach, and its applicability to larger

and more complex applications. Ideally, one would want to analyze

and transform all libraries that are used by the target application.

However, the analysis time depends on the size of the input source

code. In our current prototype, to keep the analysis time manage-

able (i.e., in the order of minutes instead of multiple hours), we

excluded Libc from our static analysis passes in order to limit the

size of the input source code. Thus, when sensitive arguments are

passed to a Libc function, we must first decrypt them.

Nevertheless, to minimize the exposure of decrypted sensitive

data to external functions, we turned to custom implementations

of commonly used Libc functions, such as memcpy, memcmp, strcpy,

and strlen. An immediate direction for future work is to explore

other pointer analysis techniques besides Andersen’s algorithm

(which has a complexity of O (n3)). One possibility is the more

efficient unification-based Steensgaard’s algorithm [79]. Unlike An-

dersen’s algorithm, however, there is no available implementation

(to the best of our knowledge) of Steensgaard’s algorithm that could

be easily incorporated into the SVF suite [80] or LLVM itself.1

It is prudent to note that precise and scalable pointer analysis is

an open problem, and other state-of-the-art memory isolation [45]

and control flow integrity [83] mechanisms have made similar

compromises by opting for overly conservative pointer analysis.

We use the best available techniques in a conservative way to avoid

false positive issues. We demonstrate that despite incurring a much

higher performance penalty than what would be possible with more

accurate pointer analysis, our approach still incurs a reasonable

performance overhead.

Lastly, because we do not implement runtime key rotation, one

can envision a scenario where an adversary can use a known plain-

text attack against the sensitive data. However, the data we are

trying to protect (i.e., private keys, session cookies) has sufficient

entropy to ensure that finding exact matches with 128 bits of known

plaintext is hard. Therefore, it is safe to use deterministic encryp-

tion under the assumed threat model and goals. Moreover, for this

type of attack to be successful, the attacker would require access to

an oracle, which falls outside of our threat model.

8 RELATED WORK

8.1 Memory Safety

Enforcing full memory safety to unsafe languages can, in the-

ory, block most memory corruption exploits. In practice, however,

the low-level nature of the C and C++ languages, which allow

unchecked array indexing, conflation of pointers and arrays, pointer

arithmetic, and type casting, makes retrofitting memory safety pro-

tections into existing programs a daunting task [63]. The overall

strategy for enforcing whole-program memory safety is to main-

tain bounds information either for each pointer [43, 64ś66] or ob-

ject [13, 50, 75], and to check every pointer dereference against

the bounds associated with the target pointer or object. By trading

extra memory space for performance, baggy bounds checking [13]

is currently one of the most efficient object-based bounds checking

approaches, although its performance overhead is still prohibitively

high, at an average of 60% for the SPEC benchmarks.

That said, spatial safety in the form of bounds checking alone

still cannot prevent use-after-free and double-free vulnerabilities.

Approaches that combine both spatial and temporal safety achieve

better memory safety, but at an even higher cost. As a case in point,

when CETS [65] is coupled with SoftBound [64] to achieve full

memory safety, the composition results in an average overhead of

116% for the SPEC benchmarks [65].

Other approaches, such as Diehard [23], Dieharder [67], Cling [11],

Archipelago [57], FreeSentry [89],WIT [12], CPI [47], and theworks

of Dhurjati et al. [33] and Byoungyoung et al. [51], opt for providing

weaker guarantees to achieve better performance and compatibility,

and thus do not offer complete protection. An alternative trade-off

1Although the LLVM compiler toolchain provides a CFL unification-based alias analysis
pass named CFL-Steens [5], because the pass performs alias analysis, it must be invoked
separately for each pair of memory operands. It then performs a graph search on each
query to resolve whether the two operands alias, instead of computing the full points-
to graph at once, like SVF. Due to these fundamental differences in the functionality
of SVF and CFL-Steens, we leave porting CFL-Steens to SVF as future work.
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is made by DataShield [27], which opts to provide full memory

safety on only a subset of sensitive data annotated by developers.

Although promising, even for an I/O-heavy application such as

a TLS server, DataShield still incurs a considerable runtime over-

head of 35.7%. Selective data encryption provides a complementary

approach, but at a much lower cost.

8.2 Transformation of In-Memory Data

An alternative approach to memory safety is to apply a transfor-

mation to the data in the main memory. As long as the attacker

can not reverse this transformation, the original data can not be

recovered or modified, thus preserving confidentiality and integrity.

Data space randomization [20, 24] applies this principle to prevent

buffer overflow attacks, using a XOR operation to randomize the

in-memory representation of objects. Our work is inspired by this

approach to selectively transform sensitive data in memory, but

using stronger AES encryption instead.

Memory encryption using AES as a protection against cold boot

attacks was proposed by Papadopoulos et al. [68]. While their ap-

proach uses a similar decryption cache scheme as ours, we integrate

a more robust pointer and value flow analysis to ensure that ac-

cesses to sensitive data is always transformed correctly.

8.3 Data Flow Integrity

Similar to control flow integrity techniques, that protect against

control flow attacks, data flow integrity mechanisms can protect

against data-only attacks. Data Flow Integrity [28] precomputes a

valid data flow graph and, at runtime, validates all data flows against

it. However, this approach has a significant overhead of 104% for the

CPU-bound SPEC benchmarks. Recently, DFI-assisting hardware

extensions [78] were proposed to lower the runtime overhead.

8.4 Hardware Based Mechanisms

Hardware-based defenses such as TRESOR [62], PRIME [36], and

PixelVault [85] protect sensitive computation from an adversary

with physical access to the device. TRESOR and PRIME provide a

memory-less, CPU bound infrastructure for sensitive computation,

such as RSA encryption. Ginseng [90] protects against an untrusted

operating system, by storing sensitive stack variables, strictly in reg-

isters, and relies on a secure implementation of secure stack, and CFI,

in ARM TrustZone’s Trusted Execution Environment (TEE) [16].

Likewise, Intel’s Software Guard Extensions (SGX) [42] provides

a set of CPU instructions that can be used by user mode applica-

tions to create private regions, called łenclaves,ž for sensitive code

and data. Various approaches have leveraged this (e.g., [17], [25],

[76], [82], [53]), but each involves major restructuring of the source

code, including changes to the compiler, OS support, and runtime

libraries. The same is true for TRESOR, PRIME, and PixelVault.

MemSentry [45] is a memory isolation framework that allows

users to create isolated memory regions by leveraging hardware

features. SP3 [88] and SeCage [55] use hypervisor support to isolate

sensitive data on a per-page basis. Compared to these systems,

we support a finer-grained separation between sensitive and non-

sensitive data, at the granularity of individual variables.

9 CONCLUSION

We presented a compiler-level defense that provides strong pro-

tection against the emerging threat of data leakage attacks. Our

approach allows developers to conveniently annotate program vari-

ables or data inputs as sensitive, and ensures that all sensitive data

is always kept encrypted when stored in memory.

Unlike existing memory safety or isolation approaches, our solu-

tion is geared toward protecting only a subset of a process’ dataÐa

design decision that allows for a radically different memory ac-

cess instrumentation strategy. Instead of instrumenting all memory

accesses in the most lightweight manner possible, our solution in-

struments only a fraction of all memory accesses, and thus enables

the use of more heavyweight encryption using AES. Our prototype

implementation aptly demonstrates the benefits of the proposed

approach, and also highlights important challenges in the area of

whole-program fine-grained pointer analysis that, once resolved,

will allow faster analysis of more complex applications, and will

enable protection against the full spectrum of data-only attacks, by

offering data integrity in addition to data confidentiality.
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A APPENDIX: ADDITIONAL
IMPLEMENTATION DETAILS

In Section 5 we discussed the encryption transformation which we

apply to the merged intermediate representation code. During our

experiments with applying our approach to various applications,

we encountered several corner cases that required special consid-

eration, when applying this transformation. In what follows, we

discuss the most important ones and how we addressed them.

A.1 Object Alignment

Although AES operates on 128-bit data blocks, sensitive objects

come in various smaller and larger sizes. To accommodate any

object size, we round up the size of sensitive objects to multiples

of 128 bits, and allocate them strictly on 128-bit boundaries. We

handle global, stack, and heap objects in the following ways.

Global and Stack Variables: LLVM’s IR supports the specification

of alignment for global and stack variables. We use this feature

to specify a custom alignment of 16 bytes for sensitive global and

stack variables and round up the size of these variables to a multiple

of 128 bits.

Heap Variables: Wemust ensure that the alignment requirements

are respected for objects allocated dynamically on the heap. To

achieve this, we provide custommemory allocation functions. These

custommemory allocation functions use the posix_memalign func-

tion to allocate memory aligned to 128 bit boundaries. We also

round up the size of the allocated region to the nearest multiple of

128 bits. Then, as part of our memory encryption transformation,

all sensitive calls to memory allocation library functions, such as

malloc and calloc, are automatically replaced with our custom

memory allocation functions.

A.2 Globals with Default Initializers

When global variables are initialized to default values, their mem-

ory is allocated in the .data segment and is initialized to the spec-

ified value at compilation timeÐthere are no explicit StoreInst

instruction executed at runtime. Because our AES instrumentation

transforms explicit memory loads and stores, we must handle the

initialization of global variables in a separate way. This is achieved

by introducing an encrypt_globals function that encrypts all sen-

sitive global variables, and inserting a call to this function at the

start of the main function.

A.3 Sensitive Constants

The sensitive data domain may include constants which must be

encrypted in memory. By default, LLVM allocates constants in the

.rodata section, which is a read-only section. Attempting to write

to these objects as part of the encryption process would cause a

protection fault. In our implementation, we address this problem

by removing the constant specifier for these objects.

A.4 Environment variables

The sensitive data domain may include pointers to environment

variables, such as $HOME, which can end up being marked as sensi-

tive as a result of the over-approximation of our pointer analysis.
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Data: List of objects annotated as SENSITIVE, sensitive value

flow sinks, pts-to and pts-from information

Result: List of all objects in the sensitive equivalence class

eq_class := List of objects annotated as sensitive;

new_objs := eq_class;

while !new_objs.isEmpty() do

ptr_set := ptrs which can point to objs in eq_class;

ptr_targets := targets of all ptrs in ptr_set;

new_objs := ptr_targets \ eq_class ;

eq_class := eq_class ∪ ptr_targets;

end
Algorithm 1: Find sensitive data equivalence class.

Encrypting these environment variables causes system calls such

as fopen to break, and thus these variables must not be modified.

We provide a cloneenv function, that first clones the value of the

environment variable, and returns a pointer to the cloned version.

Our memory encryption transformation replaces all sensitive calls

to the libc function getenv with this cloneenv function.
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