
Check my profile: Leveraging static analysis for
fast and accurate detection of ROP gadgets

Blaine Stancill1, Kevin Z. Snow1, Nathan Otterness1, Fabian Monrose1, Lucas
Davi2, and Ahmad-Reza Sadeghi2

1 Department of Computer Science, University of North Carolina at Chapel Hill,
2 CASED/Technische Universität Darmstadt, Germany,

email:{stancill,kzsnow,otternes,fabian}@cs.unc.edu,
{lucas.davi,ahmad.sadeghi}@trust.cased.de

Abstract. Return-oriented programming (ROP) offers a powerful tech-
nique for undermining state-of-the-art security mechanisms, including
non-executable memory and address space layout randomization. To mit-
igate this daunting attack strategy, several in-built defensive mechanisms
have been proposed. In this work, we instead focus on detection tech-
niques that do not require any modification to end-user platforms. Specif-
ically, we propose a novel framework that efficiently analyzes documents
(PDF, Office, or HTML files) and detects whether they contain a return-
oriented programming payload. To do so, we provide advanced techniques
for taking memory snapshots of a target application, efficiently transfer-
ring the snapshots to a host system, as well as novel static analysis and
filtering techniques to identify and profile chains of code pointers refer-
encing ROP gadgets (that may even reside in randomized libraries). Our
evaluation of over 7,662 benign and 57 malicious documents demonstrate
that we can perform such analysis accurately and expeditiously — with
the vast majority of documents analyzed in about 3 seconds.

Keywords: return-oriented programming, malware analysis

1 Introduction

Today, the wide-spread proliferation of document-based exploits distributed via
massive web and email-based attack campaigns is an all too familiar event.
Largely, the immediate goal of these attacks is to compromise target systems
by executing arbitrary malicious code in the context of the exploited program.
Loosely speaking, these attacks can be classified as either code injection —
wherein malicious instructions are directly injected into the vulnerable program
— or code reuse attacks, which opt to inject references to existing portions of
code within the exploited program. Code injection attacks date as far back as the
Morris Worm [42] and were later popularized by the seminal work of Aleph One
[3] on stack vulnerabilities. However, with the introduction and wide-spread de-
ployment of the non-executable memory principle [29] (DEP), conventional code
injection attacks have been rendered ineffective by ensuring the memory that
code is injected into is no longer directly executable.

However, as defenses were fortified with DEP, attackers began to adapt by
perfecting the art of creating practical code reuse attacks. In a so-called return-
into-libc attack, for example, rather than redirect execution flow to injected
code, the adversary simply redirects flow to a critical library function such as
WinExec(). However, while return-into-libc attacks have been shown to be pow-
erful enough to enable chained function calls [32], these attacks suffer from a
severe restriction compared to conventional code injection attacks: that is, they
do not enable arbitrary code execution. Instead, the adversary is dependent on
library functions, and can only call one function after the other. That shortcom-
ing, however, was later shown to be easily addressed. In particular, Shacham
[38] introduced return-oriented programming (ROP), wherein short sequences
of instructions are used to induce arbitrary program behavior.

One obvious mitigation to code reuse attacks is address-space layout random-
ization (ASLR), which randomizes the base address of libraries, the stack, and
the heap. As a result, attackers can no longer simply analyze a binary offline to
calculate the addresses of desired instruction sequences. That said, even though
conventional ASLR has made code reuse attacks more difficult in practice, it
can be circumvented via guessing attacks [39] or memory disclosures [37, 45].
Sadly, even more advanced fine-grained ASLR schemes [19, 22, 35, 46] have also
been rendered ineffective in the face of just-in-time return-oriented programming
attacks where instructions needed to create the payload are dynamically assem-
bled at runtime [41]. Therefore, it is our belief that until more comprehensive
preventive mechanisms for code injection and reuse attacks take hold, techniques
for detecting code reuse attacks remain of utmost importance [43].

In this paper, we provide one such approach for detecting and analyzing code
reuse attacks embedded in various file formats (e.g., those supported by Adobe
Acrobat, Microsoft Office, Internet Explorer). Unlike prior work, we focus on
detection (as a service) rather than in-built prevention on end-user systems. In
doing so, we fill an important gap in recent proposals for defenses against code
reuse attacks. More specifically, preventive defenses have yet to be widely de-
ployed, mostly due to performance and stability concerns, while the detection
approach we describe may be used by network operators today, without changes
to critical infrastructure or impacting performance of end-user systems with ker-
nel modifications or additional software. To achieve our goals, we pay particular
attention to automated techniques that (i) achieve high accuracy in assigning
benign or malicious labels to each file analyzed, and (ii) provide a scalable mech-
anism for analyzing files in an isolated environment (e.g., are cloud-capable).

2 Background and Challenges

The basic idea of return-oriented programming is depicted in Figure 1. In the
first step, the adversary places the ROP payload into the program’s writable
area. In this case, the payload does not contain any executable code, but rather,
contains a series of pointers (e.g., return addresses). Each return address points
to a particular instruction sequence residing in the address space of the target

2

program (e.g., a library segment). Typically, the instruction sequences consist
of a handful of assembler instructions that terminate in a return instruction
(RET). It is exactly the return instruction that gives return-oriented program-
ming its name, as it serves as the mechanism for connecting all the sequences.
In ROP parlance, a set of instruction sequences is called a gadget, where each
element of the set is an atomic task (e.g., a load, add, or invocation of a sys-
tem call). Shacham [38] showed that common libraries (such as libc) provide
enough sequences to construct a Turing-complete gadget set, thereby allowing
an adversary to perform arbitrary operations.

Library (e.g., libc.so)

…

Adversary

Instruction Sequence A RET

Instruction Sequence B RET

Instruction Sequence C RET

Stack Pivot RET

RET Address 4

RET Address 3

DATA

RET Address 2

RET Address 1

Initialize Stack
Pointer (SP)

Writing ROP
Payload

Corrupting
Code Pointer

…

…

…

1

2

3

4

SP

New SP Value
SP

Instruction
Sequences
Executing

Fig. 1: Basic Principle of Return-Oriented Programming

From a practical point of view, all the adversary needs to do in order to
derive her gadget set is to statically analyze the target program and the shared
libraries it links to. This step can be easily automated with the original Galileo
algorithm [38], or performed using freely available exploit tools3. Once a vulner-
able entry point is discovered, the adversary constructs the malicious payload
by carefully combining the found gadgets in a manner that subverts the target
program’s intended execution flow. Typically, this is achieved by exploiting the
vulnerable entry point (e.g., the buffer overflow) to manipulate a code pointer
(Step). For example, in Figure 1, the code pointer is overwritten with RET

Address 1 which points to a special sequence, the stack pivot [48]. This sequence
— identified during static analysis — is required to correctly set-up the return-
oriented programming attack. Specifically, upon invocation (Step ®), the stack
pivot sequence adjusts the program’s stack pointer to point to the beginning of
the return-oriented programming payload. A typical stack pivot sequence might
look like POP EAX; XCHG ESP,EAX; RET. Afterwards, the return-oriented pay-
load gets executed (Step ¯), starting with Instruction Sequence B (pointed to

3 See, for example, the mona (http://redmine.corelan.be/projects/mona) or ropc

(http://github.com/pakt/ropc) tools.

3

by Return Address 2). The return instruction of Instruction Sequence B en-
sures that the next return address is loaded from the stack to invoke Instruction
Sequence C. This procedure can be repeated as many times as the adversary
desires. The DATA tag in Figure 1 simply highlights the fact that instruction
sequences can also process attacker-supplied data, such as arbitrary offsets or
pointers to strings (e.g., a pointer to /bin/sh).

Lastly, one might argue that since return instructions play a pivotal role
in these attacks, a natural defense is simply to monitor and protect return in-
structions to mitigate return-oriented programming, e.g., by deploying a shadow
stack to validate whether a return transfers the execution back to the original
caller [1, 13, 16]. Even so, return-oriented programming without returns is pos-
sible where the adversary only needs to search for instruction sequences that
terminate in an indirect jump instruction [4]. Indeed, Checkoway et al. [7] re-
cently demonstrated that a Turing-complete gadget set can be derived for this
advanced code reuse attack technique. To date, return-oriented programming
has been adapted to numerous platforms (e.g., SPARC [5], Atmel AVR [15],
ARM [25]), and several real-world exploits (e.g., against Adobe reader [20], iOS
Safari [17], and Internet Explorer [45]) have been found that leverage this inge-
nious attack technique. Hence, ROP still offers a formidable code reuse strategy.

Peculiarities of Real-World Code Reuse Attacks: In the course of applying our
approach to a large data set on real-world exploits (see §4), we uncovered sev-
eral peculiarities of modern code reuse attacks. To our surprise, several exploits
include stack push operations that partly overwrite the ROP payload with new
pointers to instruction sequences at runtime. Although return-oriented program-
ming attacks typically overwrite already used pointers with local variables when
invoking a function, the peculiarity we discovered is that some exploits overwrite
parts of the payload with a new payload and adjust the stack pointer accord-
ingly. As far as we are aware, this challenge has not been documented elsewhere,
and makes detection based on analyzing memory snapshots particularly difficult
— since the detection mechanism has to foresee that a new payload is loaded
onto the stack after the original payload has been injected.

0x1

POP EBX; RET
SP

RET

POP EBP; RET

 WinExec()

POP ESI; RET

POP EDI; RET

RET

PUSHA; RET

“calc.exe”

EDI RET

POP EBX; RET
SP

EBP RET

ESI WinExec()

EBX (P2)

OLD ESP (P1)

EDX

ECX

EAX

“calc.exe”

SP

1

2

Executing
Instruction
Sequences
(until PUSHA)

PUSHA Sequence
Overwrites ROP Payload
with Function Parameters
and New Pointers

3

Invoking
WinExec(“calc.exe”)

Fig. 2: Peculiarities of real-world return-oriented programming attack.

4

For pedagogical reasons, Figure 2 illustrates this particular challenge. In this
case, the attacker’s goal is to execute the function WinExec(“calc.exe”) by means
of return-oriented programming. In Step ¬, the adversary issues several POP

instruction sequences to load registers, most notably, for loading ESI with the
start address of WinExec(), and moving a pointer to a RET instruction in EDI.
After the four POP instruction sequences have been executed, control is redirected
to the PUSHA instruction sequence. This instruction sequence stores the entire
x86 integer register set onto the stack (Step), effectively overwriting nearly all
pointers and data offsets used in the previously issued POP instruction sequences.
It also moves the stack pointer downwards. Hence, when the PUSHA instruction
sequence issues the final return instruction, the execution is redirected to the
pointer stored in EDI. Since EDI points to a single RET instruction, the stack
pointer is simply incremented and the next address is taken from the stack and
loaded into the instruction pointer. The next address on the stack is the value
of ESI (that was loaded earlier in Step ¬ with address of WinExec), and so the
desired call to WinExec(“calc.exe”) is executed (Step ®).

We return to this example later in §3.1, and demonstrate how our approach
is able to detect this, and other, dynamic behavior of real-world attacks.

3 Our Approach

The design and engineering of a system for detecting and analyzing code reuse at-
tacks embedded in various file formats posed significant challenges, not the least
of which is the context-sensitivity of recent code reuse attacks. That is, today’s
exploit payloads are often built dynamically (e.g., via application-supported
scripting) as the file is opened and leverage data from the memory footprint
of the particular instance of the application process that renders the document4.
Thus, any approach centered around detecting such attacks must allow the pay-
load to be correctly built. Assuming the payload is correctly built by a script
in the file, the second challenge is reliably identifying whether the payload is
malicious or benign. Part of this challenge lies in developing sound heuristics
that cover a wide variety of ROP functionality, all the while maintaining low
false positives. Obviously, for practical reasons, the end-to-end analysis of each
file must complete as quickly as possible.

The approach we took to achieve these goals is highlighted in Figure 3. In
short, code reuse attacks are detected by: Ê opening a suspicious document in
it’s native application to capture memory contents in a snapshot, Ë scanning
the data regions of the snapshot for pointers into the code regions of the snap-
shot, Ì statically profiling the gadget-like behavior of those code pointers, and
Í profiling the overall behavior of a chain of gadgets. We envision a use-case
for these steps wherein documents are either extracted from an email gateway,
parsed from network flows, harvested from web pages, or manually submitted to
our system for analysis. In what follows, we discuss the challenges and solutions
we provide for each step of our system.

4 Recall that ASLR shuffles the memory footprint of each instance.

5

Virtual Machine Virtual Machine Virtual Machine

Suspicious
Document

(SD)

Target Application
Version i

Target Application
Version i+1

Target Application
Version i+n

SD SD SD

1

Loading SD in Target
Application and
Collecting Memory
Snapshots

2
Find Code
Pointers

3
Gadget Candidate (GC)
Profiling

GC 1: POP EBX ; RET

GC 2: ADD ESI,1 ; RETN

GC 3: MOV EAX,ESI ; RET

GC n: CALL *EBX

4
ROP Chain
Profiling

LoadRegG

ArithmeticG

MovRegG

CallG
…

… Received
Suspicious
Document (SD)
which needs to
be processed by
our Analysis
Machine

H
o

st
 (

A
n

al
ys

is
)

M
ac

h
in

e

Custom Guest-Host Shared Memory Driver (for high-speed file sharing)

G
u

e
st

 (
V

ir
tu

al
iz

ed
)

M
ac

h
in

es

Fig. 3: High-level abstraction of our detection approach

3.1 Step Ê: Fast Application Snapshots

As defensive techniques have evolved, attackers have had to find new ways to
exploit vulnerable applications. In particular, the rise of DEP and ALSR made it
difficult for attackers to directly embed a payload in their target file format. To
see why, recall that the combination of DEP and ASLR prevents both traditional
code injection and the hardcoding of gadget addresses in code reuse attacks. This
forces the adversary to first perform a memory disclosure attack (i.e., using
embedded JavaScript, ActionScript, etc.) to reveal gadget addresses, then to
either adjust predefined gadget offsets [37, 45] or dynamically compile a payload
on-the-fly [41]. In practice the payload is often dynamically pieced together by
an embedded script, and the script itself is also encoded or obfuscated within
a document. Thus, to detect a document with an embedded malicious payload,
the embedded payload must be given the opportunity to unveil itself.

One approach to enable this unveiling is to write a parser for the document
file format to extract embedded scripts, then run them in a stand-alone scripting
engine while simulating the environment of the target application (e.g., [10, 14,
44]). This approach has the advantage of being able to quickly run scripts within
multiple environments simulating different versions of an application. However,
document parsing and environment simulation has practical limitations in that
an adversary need only make use of a single feature supported by the real target
application that is unimplemented in the simulated environment [34].

Another approach is to render documents with their target application (e.g.
Adobe Acrobat, etc.) in a virtual machine, then extract a snapshot of application
memory. The snapshots are extracted either outside the virtual machine (with
support from the hypervisor) or from inside the guest. Snapshots taken with
the hypervisor have the the semantic gap problem. In particular, the guest OS
cannot be used to collect auxilary information, only a simple page-level dump

6

of memory is available, and some portions of memory may be missing because
the OS has not paged them into memory at the time of the snapshot. To alle-
viate this, we adapt the complementary approach of Snow et al. [40], wherein
an in-guest application uses the dbghelp library to generate a rich application
snapshot, called a minidump5. The minidump format not only contains the con-
tent of memory, but also the meaning, e.g., which pages correspond to binary
and library sections, the location of the TEB data structure (which can be used
to locate the stack and heap), etc. The minidump format also combines adjacent
memory pages with matching permissions into a single structure called a region.

We generate a snapshot once the cpu goes idle, or a time or memory threshold
is exceeded. As with any snapshot-based approach, we rely on the malicious
payload being present in memory at the time the snapshot is taken. This may
not be the case, for example, if the malicious document requires user input before
constructing the payload, the payload is intentionally deleted from memory, or
the payload is destroyed as it executes (see Figure 2). While this is certainly
a concern, in practice exploits are executed with as little user-interaction as
possible to maximize chances of success. Further, multiple copies of the payload
exist in memory for all real-world exploits we have observed due to either heap
spraying the payload, or pass-by-value function parameters.

Similarly to Lindorfer et al. [27], we simultaneously launch the document
in different versions of the target appplication. While doing so may seem like
a heavyweight operation, we note that simply opening an application is by no
means cpu or io intensive. In theory, an alternative approach would be to take
advantage of the multi-execution, approach suggested by Kolbitsch et al. [24].

A significant bottleneck of the in-guest snapshot approach in past work was
the process of transferring the memory snapshot, which may be hundreds of
megabytes, from the guest OS to the host for analysis. Typically, guest-host
file sharing is implemented by a network file sharing protocol (e.g., Samba),
and transferring large snapshots over a network protocol (even with paravirtu-
alization) can add tens of seconds of overhead. To solve the problem of the fast
transfer of memory snapshots, we developed a custom guest-host shared memory
driver built on top of the ivshmem PCI device in qemu. The fast transfer driver
(and supporting userspace library) provides a file and command execution pro-
tocol on top of a small shared memory region between host and guest. Using our
driver, transferring large files in (and out), as well as executing commands in
the guest (from the host) incurs only negligible latency as all data transfer oc-
curs in-memory. Altogether, our memory snapshot utility and fast transfer suite
implementation is about 4, 600 lines of C/C++ code, and our virtual machine
manager is about 2, 200 lines of python code that fully automates document
analysis. Thus, we use our fast-transfer driver to pull the application snapshot
out of the guest, and onto the host system for further analysis.

5 For more information on dbghelp and minidump, see http://msdn.microsoft.com/

en-us/library/windows/desktop/ms680369(v=vs.85).aspx.

7

3.2 Step Ë: Efficient Scanning of Memory Snapshots

With a memory snapshot of the target application (with document loaded) in-
hand, we now scan the snapshot to identify content characteristic of ROP. To do
so, we first traverse the application snapshot to build the set of all memory ranges
a gadget may use, denoted the gadget space. These memory ranges include any
memory region marked as executable in the application’s page table, including
regions that are randomized with ASLR or allocated dynamically by JIT code.
Next, we make a second pass over the snapshot to identify data regions, called
the payload space. The payload space includes all thread stacks, all heaps, and
any other data that was dynamically allocated, but excludes the static variable
regions and relocation data used by each module6. The application snapshots
from step Ë provide all the necessary meta-information about memory regions.
In short, executable memory is considered gadget space, while writeable mem-
ory is considered payload space. Note that memory that is both writeable and
executable is considered in both spaces.

As we traverse the payload space, we look for the most basic indicator of a
ROP payload—namely, 32-bit addresses pointing into the gadget space. Traversal
over the payload space is implemented as a 4-byte (32-bit) window that slides
1-byte at a time. We do so because the initial alignment of a payload is unknown.
For each 4-byte window, we check if the memory address falls within the gadget
space. Notice, however, that if the payload space is merely 25MB, that would
require roughly 26.2 million range lookups to scan that particular snapshot. A
naive implementation of this lookup by iterating over memory regions or even
making use of a binary tree would be too costly. Instead, we take advantage of
the fact that memory is partitioned into at least 4KB pages. We populate an
array indexed by memory page (i.e., the high-order 20-bits of an address) with a
pointer to information about the memory region that contains that page. Storing
page information this way mimics hardware page tables and requires only 4MB
of storage. This allows us to achieve constant lookup time by simply bit-shifting
each address and using the resulting 20-bits as an index into the page table.

When a pointer to gadget space is encountered (deemed a gadget candidate),
we treat it as the start of a potential gadget chain and start by profiling the
behavior of the first gadget candidate in the chain.

3.3 Step Ì: Gadget Candidate Profiling

A pointer from the application snapshot’s payload space that leads to code in the
gadget space has the potential makings of a ROP gadget, i.e., a discrete operation
may be performed followed by a return via any indirect branch instruction to the
payload space to start execution of the next gadget. The first challenge of gadget
candidate profiling is to determine if a particular instruction sequence has any
potential to be used as a ROP gadget. To do so, we label any instruction sequence

6 An adversary would not typically control data at these locations, and thus we assume
a code reuse payload can not exist there.

8

ending with an indirect branch, such as ret, jmp, or call instructions, as a valid
gadget. However, an instruction sequence may end before being labeled a valid
gadget by encountering (i) an invalid instruction, (ii) a privileged instruction
(e.g., io instructions), (iii) a memory operation with an immediate (hardcoded)
address that is invalid, (iv) a direct branch to an invalid memory location, (v)
a register used in a memory operation without first being assigned7, or (vi) the
end of the code region segment. If any of these conditions are encountered, we
stop profiling the gadget candidate and either return to step Ë if this is the first
gadget candidate in a potential gadget chain, or proceed to step Í to profile the
overall gadget chain if there exists at least one valid gadget.

In addition to deciding if a gadget is valid, we also profile the behavior of
the gadget. Gadgets are labeled by the atomic operation they perform (§2). In
practice, individual gadgets usually adhere to the concept of atomic operations
due to the difficulty of accounting for side effects of longer sequences. While
we experimented with many types of gadget profiles, only a few proved useful
in reliably distinguishing actual ROP payloads from benign ROP-like data. These
profiles are LoadRegG, and JumpG/CallG/PushAllG/PushG (we also refer to this
entire set as CallG) which precisely map to pop, jmp and jmpc, call, pusha,
and push instruction types. Thus, if we observe a pop, for example, the gadget
is labelled as a LoadRegG, ignoring any other instructions in the gadget unless
one of the CallG instructions is observed, in which case the gadget is labelled
with CallG. More instructions could be considered (i.e. mov eax, [esp+10] is
another form of LoadRegG), but we leave these less common implementations as
future work. Note that if a gadget address corresponds directly to an API call8,
we label it as such, and continue to the next gadget. The usefulness of tracking
these profiles should become apparent next.

3.4 Step Í: ROP Chain Profiling

In the course of profiling individual gadgets, we also track the requisite offset that
would be required to jump to the next candidate in a chain of gadgets — i.e.,
the stack pointer modifications caused by push, pop, and arithmetic instructions.
Using this information, we profile each gadget as in step Ì, then select the next
gadget using the stack offset produced by the previous gadget. We continue
profiling gadgets in the chain until either an invalid gadget candidate or the end
of the memory region containing the chain is encountered. Upon termination
of a particular chain, our task is to determine if it represents a malicious ROP

payload or random (benign) data. In the former case, we trigger an alert and
provide diagnostic output; in the latter, we return to step Ê and advance the
sliding window by one byte.

7 We track assignments across multiple gadgets and start with the assumption that
eax is always assigned. Real-world ROP chains often begin execution after a stack
pivot of the form xchg eax,esp and subsequently use eax as a known valid pointer
to a writeable data region.

8 We also consider calls that jump five bytes into an API function to evade hooks.

9

Unfortunately, the distinction between benign and malicious ROP chains is not
immediately obvious. For example, contrary to the observations of Polychronakis
and Keromytis [36], there may be many valid ROP chains longer than 6 unique
gadgets in benign application snapshots. Likewise, it is also possible for malicious
ROP chains to have as few as 2 unique gadgets. One such example is a gadget that
uses pop eax to load the value of an API call followed by a gadget that uses jmp
eax to initiate the API call, with function parameters that follow. Similarly, a
pop/call or pop/push chain of gadgets works equally well.

That said, chains of length 2 are difficult to use in real-world exploits. The
difficulty arises because a useful ROP payload will often need to call an API that
requires a pointer parameter, such as a string pointer for the command to be
executed in WinExec. Without additional gadgets to ascertain the current value
of the stack pointer, the adversary would need to resort to hard-coded pointer
addresses. However, these addresses would likely fail in face of ASLR or heap
randomization, unless the adversary could also leverage a memory disclosure
vulnerability prior to launching the ROP chain. An alternative to the 2-gadget
chain with hard-coded pointers is the pusha method of performing an API call,
as illustrated in Figure 2. Such a strategy requires 5 gadgets (for the WinExec

example) and enables a single pointer parameter to be used without hard-coding
the pointer address.

The aforementioned ROP examples shed light on a common theme—malicious
ROP payloads will at some point need to make use of an API call to interact
with the operating system and perform some malicious action. At minimum,
a ROP chain will need to first load the address of an API call into a register,
then actually call the API. A gadget that loads a register with a value fits our
LoadRegG profile, while a gadget that actually calls the API fits either the JumpG,
CallG, PushAllG, or PushG profiles. Our primary heuristic for distinguishing
malicious ROP payloads from those that are benign is to identify chains that
potentially make an API call, which is fully embodied by observing a LoadRegG,
followed by any of the profiles in the CallG set. We found this intuitive heuristic
to be sufficient to reliably detect all real-world malicious ROP chains. However, by
itself, the above strategy would lead to false positives with very short chains, and
hence we apply a final filter. When the total number of unique gadgets is ≤ 2,
we require that the LoadRegG gadget loads the value of a system API function
pointer. Assuming individual gadgets are discrete operations (as in §2), there
is no room for the adversary to obfuscate the API pointer value between the
load and call gadgets. On the otherhand, if the discrete operation assumption
is incorrect we may miss payloads that are only 1 or 2 unique gadgets, which
we have not actually observed in real-world payloads. Empirical results showing
the impact of varying the criteria used in our heuristic versus the false positive
rate, especially with regard to the number of unique gadgets, is provided next.

Steps Ë to Í are implemented in 3803 lines of C++ code, not including a third
party disassembly library (libdasm).

10

4 Evaluation

We now turn our attention to a large-scale empirical analysis where our static ROP
chain profiling technique is used to effectively distinguish malicious documents
from benign documents. Our benign dataset includes a random subset of the Dig-
ital Corpora collection9 provided by Garfinkel et al. [18]. We analyzed 7, 662 be-
nign files that included 1, 082 Microsoft Office, 769 Excel, 639 PowerPoint, 2, 866
Adobe Acrobat, and 2, 306 html documents evaluated with Internet Explorer.
Our malicious dataset spans 57 samples that include the three ideal 2-gadget ROP
payloads (e.g., pop/push, pop/jmp, and pop/call sequences) embedded in pdf

documents exploiting CVE-2007-5659, the pusha example in Figure 2, 47 pdf

documents collected in the wild that exploit CVE-2010-{0188,2883}, two pay-
loads compiled using the jit-rop framework [41] from gadgets disclosed from a
running Internet Explorer 10 instance, and four malicious html documents with
embedded Flash exploiting CVE-2012-{0754,0779,1535} in Internet Explorer 8.
The latter four documents were served via the metasploit framework.

All experiments were performed on an Intel Core i7 2600 3.4GHz machine
with 16GB of memory. All analyzes were conducted on a single CPU.

4.1 Results

Figures 4(a) and 4(b) show the cumulative distribution of each benign docu-
ment’s snapshot payload space size and gadget space size, respectively. Recall
that payload space refers to any data region of memory that an adversary could
have stored a ROP payload, such as stack and heap regions. The payload space
varies across different applications and size of the document loaded. Large doc-
uments, such as PowerPoint presentations with embedded graphics and movies
result in a larger payload space to scan. In our dataset, 98% of the snapshots
have a payload size less than 21 MB, and the largest payload space was 158 MB.
We remind the reader that the number of bytes in the payload space is directly
related to the number of gadget space lookups we must perform in step Ë.

The gadget space size (i.e., the total amount of code in the application snap-
shot) is shown in Figure 4(b). The gadget space varies between different target
applications, and also between documents of the same type that embed features
that trigger dynamic loading of additional libraries (e.g., Flash, Java, etc). We
found that 98% of benign application snapshots contain less than 42 MB of code.
Note that if a malicious ROP payload were present, all of it’s gadgets must be
derived from the gadget space of that particular application instance.

Our static ROP chain profiling captures the interaction between the payload
and gadget spaces of an application snapshot. Each 4-byte chunk of data in
the payload space that happens to correspond to a valid address in the gadget
space triggers gadget and chain profiling. Figure 5(a) depicts the cumulative
distribution of the number of times gadget candidate profiling was triggered
over all benign snapshots. Not surprisingly, we observed that even within benign

9 The dataset is available at http://digitalcorpora.org/corpora/files.

11

(a) Payload space size. (b) Gadget space size.

Fig. 4: Payload and gadget space size for the benign dataset.

(a) Number of gadget candidates. (b) Execution time.

Fig. 5: Number of candidates and the corresponding runtime for the benign dataset.

documents there exist a number of pointers into gadget space from the payload
space, with a median of about 32k gadget candidates (or about 2% of the median
payload space). The stack of each application thread, for example, typically
contains many pointers into gadget space in the form of return addresses that
were pushed by function calls. The heap(s) of an application may also contain
function pointers used by the application—for example, an array of function
pointers that represent event handlers.

Figure 5(b) depicts the cumulative distribution of the total time to apply
static ROP chain profiling steps Ë to Í, which closely correlates with the total
number of gadget candidates shown in Figure 5(a). The runtime demonstrates
the efficiency of our technique, with 98% of documents taking less than half a
second to analyze. The average runtime for taking an application snapshot in
step Ê is about 3 seconds, with a worst case of 4 seconds.

12

Using the heuristic described in §3, we experienced no false positives on any of
the 7, 662 benign documents. However, we find it instructive to provide a deeper
analysis on the benign ROP chains we did encounter that were not flagged as
malicious. This analysis helps us understand why we did not have false positives
in relation to the rules used by our heuristic. To do so, we relax some of our
criteria from steps Ì and Í to gauge the adverse impact on false positives that
these criteria are meant to prevent.

SysCall Rule Assignment Rule FP

disabled disabled 88.9%
nGadgets ≤ 2 disabled 49.5%

disabled nGadgets ≤ 2 88.9%
disabled nGadgets ≤ 3 84.1%
disabled nGadgets ≤ 4 36.8%

nGadgets ≤ 2 nGadgets ≤ 2 49.5%
nGadgets ≤ 2 nGadgets ≤ 3 49.5%
nGadgets ≤ 2 nGadgets ≤ 4 0.26%
nGadgets ≤ 2 nGadgets ≤ 5 0.00%

Table 1: An analysis of our profiling rules that significantly impact false positives.

First, we relax our criteria for ROP chains to be considered valid even if they
read or write to memory with a register that was not previously assigned (see
§3 step Ì), deemed the assignment rule. Second, we discard the requirement of
having a system call pointer used by LoadRegG in 2-gadget chains (see §3 step
Í). We also test the effect of conditionally applying the assignment and system
call rules depending on the total number of unique gadgets in the chain. The
idea is that longer chains, even if violating these criteria, are more likely to be
malicious if they still meet our overall profiling criteria (e.g., some real-world
ROP chains may assume specific values are pre-loaded into registers). The results
are organized in Table 1.

The results show the system call rule alone reduces the amount of false pos-
itives much more drastically than the assignment rule by itself. In fact, when
the number of unique gadgets is less than 2, the assignment rule alone does not
help reduce the number of false positives. When utilizing both rules, the system
call rule overrides the effects of the assignment rule until the number of unique
gadgets for the assignment rule exceeds three. At this point the rules compliment
each other and reduce the number of false positives. Finally, 98% of the gadget
chains in our entire dataset are composed of 5 or less gadgets per chain, thus
taking advantage of both these rules to filter benign chains.

There be dragons: We now turn our focus to the malicious document samples in
our dataset. Our heuristic precisely captures the behavior of our ideal 2-gadget
ROP payloads and the simple pusha example, which are all identified successfully.

13

To see why, consider that our technique is used to analyze the ROP chain given in
Figure 6. Clearly, a LoadRegG is followed by a JumpG. The data loaded is also a
system call pointer. This secondary check is only required for chain lengths ≤ 2.
Although this small example is illustrative in describing ROP and our heuristic,
real-world examples are much more interesting.

LoadRegG: 0x28135098

--VA: 0x28135098 --> pop eax

--VA: 0x28135099 --> ret

data: 0x7C86114D

JumpG: 0x28216EC1

--VA: 0x28216EC1 --> jmp eax

Fig. 6: 2-gadget ROP chain (from a malicious document) that calls the WinExec API

Of the 47 samples captured in the wild that exploit CVE-2010-{0188,2883}
with a malicious pdf document, 15 caused Adobe Acrobat to present a message
indicating the file was corrupt prior to loading in step Ê. Therefore, no ROP

was identified in these application snapshots. It is possible that an untested
version of Adobe Acrobat would have enabled opening the document; however,
selecting the correct environment to run an exploit in is a problem common to
any approach in this domain. We discarded these 15 failed document snapshots.
Our heuristic triggered on all of the 32 remaining document snapshots. Traces of
portions of the ROP chain that triggered our heuristic are given in Appendix §A.
The two jit-rop payloads triggered our heuristic multiple times. These payloads
make use of LoadLibrary and GetProcAddress API calls to dynamically locate
the address of the WinExec API call. In each case, this API call sequence is
achieved by several blocks of ROP similar to those used in CVE-2012-0754.

5 Limitations

The astute reader will recognize that our criteria for labeling a gadget as valid
in Step Ë is quite liberal. For example, the instruction sequence mov eax,0;

mov [eax],1; ret; would produce a memory fault during runtime. However,
since our static analysis does not track register values, this gadget is considered
valid. We acknowledge that although our approach for labeling valid gadgets
could potentially lead to unwanted false positives, it also ensures we do not
accidentally mislabel real ROP gadgets as invalid.

We note that while our static instruction analysis is intentionally generous,
there are cases that static analysis can not handle. First, we can not track a
payload generated by polymorphic ROP [28] with purely static analysis. To the
best of our knowledge, however, polymorphic ROP has not been applied to real-
world exploits that bypass DEP and ASLR. Second, an adversary may be able to
apply obfuscation techniques [30] to confuse static analysis; however, application

14

of these techniques is decidedly more difficult when only reusing existing code.
Regardless, static analysis alone cannot handle all cases of ROP payloads that
make use of register context setup during live exploitation. In addition, our
gadget profiling assumes registers must be assigned before they are used, but
only when used in memory operations. Our results (in §4) show we could relax
this assumption by only applying the assignment rule on small ROP chains.

6 Other Related Work

Most germane is the work of Polychronakis and Keromytis [36], called ROPscan,
which detects return-oriented programming by searching for code pointers (in
network payloads or memory buffers) that point to non-randomized modules
mapped to the address space of an application. Once a code pointer is discov-
ered, ROPScan performs code emulation starting at the instructions pointed to
by the code pointer. A return-oriented programming attack is declared if the
execution results in a chain of multiple instruction sequences. In contrast to
our work, ROPScan only analyzes pointers to non-randomized modules which is
quite limiting since today’s exploits place no restriction on the reliance of non-
randomized modules; instead they exploit memory leakage vulnerabilities and
calculate code pointers on-the-fly, thereby circumventing detection mechanism
that only focus on non-randomized modules. Moreover, the fact that execution
must be performed from each code pointer leads to poor runtime performance.

Similarily, Davi et al. [12] and Chen et al. [8] offer rudimentary techniques for
detecting the execution of a return-oriented programming payload based solely
on checking the frequency of invoked return instructions. Specifically, these ap-
proaches utilize binary instrumentation techniques and raise an alarm if the num-
ber of instructions issued between return instructions is below some predefined
threshold. Clearly, these techniques are fragile and can easily be circumvented
by invoking longer sequences in between return instructions.

Arguably, one of the most natural approaches for thwarting code reuse at-
tacks is to simply prevent the overwrite of code pointers in the first place. For
instance, conventional stack smashing attacks rely on the ability to overflow a
buffer in order to overwrite adjacent control-flow information [3]. Early defense
techniques attempted to prevent such overwrites by placing so-called stack ca-
naries between local variables and sensitive control-flow information [11]. Unfor-
tunately, stack canaries only provided protection for return addresses, but not
for function pointers. Subsequently, more generic approaches were developed,
including buffer bounds checking, type-safety enforcement [31], binary instru-
mentation [13], as well as data-flow integrity (DFI) [2, 6]. Unfortunately, these
advanced techniques either focus on non-control data attacks [9] or impose high
runtime overhead. Additionally, DFI solutions require access to source code to
determine the boundaries of variables and to determine which code parts are
allowed to write into a specific variable.

A recent line of inquiry (e.g., return-less kernels [26] and G-Free [33]) for
mitigating the threat of return-oriented programming relies on the ability to

15

eliminate the presence of so-called unintended instruction sequences, which can
be executed by jumping into the middle of an instruction. Moreover, G-Free
mitigates both return- and jump-oriented programming by encrypting return
addresses and ensuring that indirect jumps/calls can only be issued from a func-
tion that was entered from it originally. Unfortunately, both approaches require
access to source code and re-compilation of programs — i.e., factors that limit
their widespread applicability.

Yet another line of defense is to monitor and validate the control-flow of
programs at runtime. In particular, program shepherding uses binary-based in-
strumentation to dynamically rewrite and check control-flow instructions [23].
For instance, return instructions are forced to transfer control to a valid call site,
i.e., an instruction that follows a call instruction. Control-flow integrity (CFI)
goes a step further and enforces fine-grained control-flow checks for all indirect
branches a program issues [1], effectively defeating conventional and advanced
code reuse attacks. That said, the fact that CFI has yet to be shown practical
for COTS binaries remains one limiting factor in its adoption. While some CFI-
based follow-up work (e.g., [21, 47]) have attempted to tackle this deficiency, the
deployed CFI policies are usually too coarse-grained in practice.

7 Conclusion

In this paper, we introduce a novel framework for detecting code reuse attacks
lurking within malicious documents. Specifically, we show how one can efficiently
capture memory snapshots of applications that render the target documents and
subsequently inspect them for ROP payloads using newly developed static anal-
ysis techniques. Along the way, we shed light on several challenges in developing
sound heuristics that cover a wide variety of ROP functionality, all the while
maintaining low false positives. Our large-scale evaluation spanning thousands
of documents show that our approach is also extremely fast, with most analyses
completing in a few seconds.

8 Acknowledgments

We thank the anonymous reviewers for their insightful comments. This work
is funded in part by the National Science Foundation under award numbers
0915364 and 1127361.

A Example detection and diagnostics

Once ROP payloads are detected, we are able to provide additional insight on the
behavior of the malicious document by analyzing the content of the ROP chain.
Figure 7 depicts sample output provided by our static analysis utility when our
heuristic is triggered by a ROP chain in an application snapshot.

16

==== CVE-2012-0754 ====
LoadRegG: 0x7C34252C (MSVCR71.dll)

--VA: 0x7C34252C --> pop ebp
--VA: 0x7C34252D --> ret

data: 0x7C34252C
LoadRegG: 0x7C36C55A (MSVCR71.dll)

--VA: 0x7C36C55A --> pop ebx
--VA: 0x7C36C55B --> ret

data: 0x00000400
LoadRegG: 0x7C345249 (MSVCR71.dll)

--VA: 0x7C345249 --> pop edx
--VA: 0x7C34524A --> ret

data: 0x00000040
LoadRegG: 0x7C3411C0 (MSVCR71.dll)

--VA: 0x7C3411C0 --> pop ecx
--VA: 0x7C3411C1 --> ret

data: 0x7C391897
LoadRegG: 0x7C34B8D7 (MSVCR71.dll)

--VA: 0x7C34B8D7 --> pop edi
--VA: 0x7C34B8D8 --> ret

data: 0x7C346C0B
LoadRegG: 0x7C366FA6 (MSVCR71.dll)

--VA: 0x7C366FA6 --> pop esi
--VA: 0x7C366FA7 --> ret

data: 0x7C3415A2
LoadRegG: 0x7C3762FB (MSVCR71.dll)

--VA: 0x7C3762FB --> pop eax
--VA: 0x7C3762FC --> ret

data: 0x7C37A151
PushAllG: 0x7C378C81 (MSVCR71.dll)

--VA: 0x7C378C81 --> pusha
--VA: 0x7C378C82 --> add al,0xef
--VA: 0x7C378C84 --> ret

==== CVE-2010-0188 ====
...snip...
LoadRegG: 0x070015BB (BIB.dll)

--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x7FFE0300
gadget: 0x07007FB2 (BIB.dll)

--VA: 0x07007FB2 --> mov eax,[ecx]
--VA: 0x07007FB4 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010011
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010100
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070072F7 (BIB.dll)
--VA: 0x070072F7 --> pop eax
--VA: 0x070072F8 --> ret

data: 0x00010011
CallG: 0x070052E2 (BIB.dll)

--VA: 0x070052E2 --> call [eax]

Fig. 7: ROP chains extracted from snapshots of Internet Explorer when the Flash plugin
is exploited by CVE-2012-0754, and Adobe Acrobat when exploited by CVE-2010-0188.

The first trace (top left) is for a Flash exploit (CVE-2010-0754). Here, the
address for the VirtualProtect call is placed in esi, while the 4 parameters
of the call are placed in ebx, edx, ecx, and implicitly esp. Once the pusha

instruction has been executed, the system call pointer and all arguments are
pushed onto the stack and aligned such that the system call will execute properly.
This trace therefore shows that VirtualProtect(Address*=oldesp, Size=400,
NewProtect=exec‖read‖write, OldProtect*=0x7c391897) is launched by this ROP
chain. We detect this payload due to the presence of LoadRegG gadgets followed
by the final PushAllG. A non-ROP second stage payload is subsequently executed
in the region marked as executable by the VirtualProtect call.

The second trace (right) is for an Adobe Acrobat exploit (CVE-2010-0188).
The trace shows the ROP chain leveraging a Windows data structure that is al-
ways mapped at address 0x7FFE0000. Specifically, the chain uses multiple gad-
gets to load the address, read a pointer to the KiFastSystemCall API from
the data structure, load the address of a writable region (0x10011) and store
the API pointer. While interesting, none of this complexity affects our heuristic;
the last two gadgets fit the profile LoadRegG/CallG, wherein the indirect call
transfers control to the stored API call pointer.

17

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Princi-
ples, implementations, and applications. ACM Transactions on Information and
Systems Security, 13(1), Oct. 2009.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory
error exploits with wit. In IEEE Symposium on Security and Privacy, 2008.

[3] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14), 1996.

[4] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming:
a new class of code-reuse attack. In ACM Symposium on Information, Computer
and Communications Security, 2011.

[5] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions
go bad: Generalizing return-oriented programming to RISC. In ACM Conference
on Computer and Communications Security, 2008.

[6] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow
integrity. In USENIX Symposium on Operating Systems Design and Implementa-
tion, 2006.

[7] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In ACM Confer-
ence on Computer and Communications Security, 2010.

[8] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In Intl. Conf. on Information Systems
Security, 2009.

[9] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks
are realistic threats. In USENIX Security Symposium, 2005.

[10] M. Cova, C. Kruegel, and V. Giovanni. Detection and analysis of drive-by-
download attacks and malicious javascript code. In International conference on
World Wide Web, 2010.

[11] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks. In USENIX Security Symposium, 1998.

[12] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic integrity measurement and at-
testation: towards defense against return-oriented programming attacks. In ACM
Workshop on Scalable Trusted Computing, 2009.

[13] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. In ACM Symposium on
Information, Computer and Communications Security, 2011.

[14] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers against
drive-by downloads: Mitigating heap-spraying code injection attacks. In Detection
of Intrusions and Malware & Vulnerability Assessment, 2009.

[15] A. Francillon and C. Castelluccia. Code injection attacks on harvard-architecture
devices. In ACM Conference on Computer and Communications Security, 2008.

[16] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack protection. In
USENIX Security Symposium, 2001.

[17] Gadgets DNA. How PDF exploit being used by Jail-
breakMe to Jailbreak iPhone iOS. http://www.gadgetsdna.com/

iphone-ios-4-0-1-jailbreak-execution-flow-using-pdf-exploit/5456/.

[18] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt. Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, 6:2–11, 2009.

[19] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d
my gadgets go? In IEEE Symposium on Security and Privacy, 2012.

[20] jduck. The latest adobe exploit and session upgrading. https:

//community.rapid7.com/community/metasploit/blog/2010/03/18/

the-latest-adobe-exploit-and-session-upgrading, 2010.
[21] M. Kayaalp, M. Ozsoy, N. A. Ghazaleh, and D. Ponomarev. Efficiently se-

curing systems from code reuse attacks. IEEE Transactions on Computers, 99
(PrePrints), 2012.

[22] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software. In Annual
Computer Security Applications Conference, 2006.

[23] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution via program
shepherding. In USENIX Security Symposium, 2002.

[24] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking Internet
Malware. In IEEE Symposium on Security and Privacy, pages 443–457, 2012.

[25] T. Kornau. Return oriented programming for the ARM architecture. Master’s
thesis, Ruhr-University, 2009.

[26] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with ”return-less” kernels. In European Conf. on Computer systems, 2010.

[27] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting environment-
sensitive malware. In Symposium on Recent Advances in Intrusion Detection,
pages 338–357, 2011.

[28] K. Lu, D. Zou, W. Wen, and D. Gao. Packed, printable, and polymorphic return-
oriented programming. In Symposium on Recent Advances in Intrusion Detection,
pages 101–120, 2011.

[29] Microsoft. Data Execution Prevention (DEP). http://support.microsoft.com/
kb/875352/EN-US/, 2006.

[30] A. Moser, C. Kruegel, and E. Kirda. Limits of Static Analysis for Malware De-
tection. In Annual Computer Security Applications Conference, pages 421–430,
2007.

[31] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. Ccured: type-
safe retrofitting of legacy software. ACM Transactions on Programming Languages
and Systems, 2005.

[32] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack Maga-
zine, 58(4), 2001.

[33] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free: defeating
return-oriented programming through gadget-less binaries. In Annual Computer
Security Applications Conference, 2010.

[34] T. Overveldt, C. Kruegel, and G. Vigna. FlashDetect: ActionScript 3 Malware
Detection. In D. Balzarotti, S. Stolfo, and M. Cova, editors, Symposium on Re-
cent Advances in Intrusion Detection, volume 7462 of Lecture Notes in Computer
Science, pages 274–293. 2012.

[35] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hin-
dering return-oriented programming using in-place code randomization. In IEEE
Symposium on Security and Privacy, 2012.

[36] M. Polychronakis and A. D. Keromytis. ROP payload detection using speculative
code execution. In MALWARE, 2011.

[37] F. J. Serna. The info leak era on software exploitation. In Black Hat USA, 2012.

19

[38] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In ACM Conference on Computer and Communica-
tions Security, 2007.

[39] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and D. Boneh. On the effec-
tiveness of address-space randomization. In ACM Conference on Computer and
Communications Security, 2004.

[40] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos. Shellos: enabling fast de-
tection and forensic analysis of code injection attacks. In USENIX Security Sym-
posium, 2011.

[41] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and A.-R. Sadeghi.
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In IEEE Symposium on Security and Privacy, 2013.

[42] E. H. Spafford. The Internet worm: Crisis and aftermath. Communications of the
ACM, 32(6):678–687, 1989.

[43] L. Szekeres, M. Payer, T. Wei, and D. Song. SOK: Eternal War in Memory. IEEE
Symposium on Security and Privacy, 2013.

[44] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos. Combining
static and dynamic analysis for the detection of malicious documents. In European
Workshop on System Security, 2011.

[45] P. Vreugdenhil. Pwn2Own 2010 Windows 7 Internet Explorer 8 exploit. , 2010.
[46] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-

randomizing instruction addresses of legacy x86 binary code. In ACM Conference
on Computer and Communications Security, 2012.

[47] Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting violation of control flow
integrity using performance counters. In IEEE/IFIP International Conference on
Dependable Systems and Networks, 2012.

[48] D. D. Zovi. Practical return-oriented programming. RSA Conference, 2010.

20

