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Abstract

Forensic analysts typically require access to application-
layer information gathered over long periods of time to
completely investigate network security incidents. Un-
fortunately, storing longitudinal network data is often
at odds with maintaining detailed payload information
due to the overhead associated with storing and querying
such data. Thus, the analyst is left to choose between
coarse information about long-term network activities or
brief glimpses of detailed attack activity. In this paper,
we take the first steps toward a storage framework for
network payload information that provides a better bal-
ance between these two extremes. We take advantage of
the redundancy found in network data to aggregate pay-
load information into flexible and efficiently compress-
ible data objects that are associated with network flows.
To enable interactive querying, we introduce a hierarchi-
cal indexing structure for both the flow and payload in-
formation, which allows us to quickly prune irrelevant
data and answer queries directly from the indexing infor-
mation. Our empirical results on data collected from a
campus network show that our approach can significantly
reduce the volume of the stored data, while simultane-
ously preserving the ability to perform detailed queries
with response times on the order of seconds.

1 Introduction

A complete incident response strategy for network at-
tacks includes short-term detection and mitigation of the
threat, as well as a broad forensic process. These foren-
sic investigations attempt to discover the root cause of
the attack, its impact on other resources, and how fu-
ture attacks may be prevented. To perform these foren-
sic tasks, however, a security analyst needs long-term,
detailed information on the activities of monitored re-
sources, which often includes the application-layer com-
munications found within packet payloads, such as DNS
queries and HTTP responses.

These requirements are perhaps best illustrated by the
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recent tide of attacks by so-called advanced persistent
threats on major corporations and government contrac-
tors (eg., Google, RSA and Oakridge National Labora-
tory [30]). In each case, a single security breach (e.g.,
phishing or browser exploit) was used to gain a foothold
within an otherwise secure network, which remained un-
detected for weeks while computing resources were ac-
cessed and proprietary information was exfiltrated. The
only way to grasp the full impact of these types of at-
tacks is to trace through each step and examine the as-
sociated communications information, including DNS
names, HTTP redirection, and web page requests.

The obvious problem is that modern enterprise net-
works can easily produce terabytes of packet-level data
each day, which makes efficient analysis of payload in-
formation difficult or impossible even in the best cir-
cumstances. Although several approaches have been de-
veloped to capture and store network flow (i.e., Net-
Flow) connection summaries (e.g., [6, 8, 12, 13, 16, 24]),
these systems are inappropriate to the task at hand since
they necessarily discard the application-layer informa-
tion that is so important to the forensic analysis pro-
cess. Furthermore, packet payload data introduces sev-
eral unique challenges that are not easily addressed by
traditional database systems. For one, there are thou-
sands of application-layer protocols, each with their own
unique data schemas!. Many of these protocol schemas
are also extremely dynamic with various combinations
of fields and use of complex data types, like arrays. Of
course, there are also cases where the existence of propri-
etary or unknown application-layer protocols may pre-
vent us from parsing the payload at all, and yet we still
must be able to support analysis of such data.

Using a standard relational database solution in this
scenario, be it column or row-oriented, would require
thousands of structured tables with tens or hundreds of
sparsely populated columns. Consequently, these tradi-

! As a case in point, Wireshark can parse over 10,000 protocols, fifty
percent of which have more than 20 fields.



tional approaches introduce significant storage overhead,
require complex join operations to relate payload fields
to one another, and create bottlenecks when querying for
complex payload data (e.g., arrays of values). While the
availability of distributed computing frameworks [5, 11]
help tackle some of these issues, the query times required
for interactive analysis might only be realized when hun-
dreds of machines are applied to the task — resources that
may be unavailable to many analysts. Moreover, even
when such resources are available, data organization re-
mains a critical issue. Therefore, the question of how
to enable efficient and interactive analysis of long-term
payload data remains.

In this work, we address these challenges by extend-
ing existing network flow data storage frameworks with
a set of summary payload objects that are highly com-
pressible and easy to index. As with many of the net-
work flow data stores, we aggregate network data into
bidirectional flows and store the network-level flow data
(e.g., IP addresses, ports, timestamps) within an indexed,
column-oriented database structure. Our primary contri-
bution, however, lies in how we store and index the pay-
load information, and then attach that information to the
column-oriented flow database. By using our proposed
storage technique we are able to reduce the volume of
data stored and still maintain pertinent payload informa-
tion required by the analyst. While our ultimate goal is to
create a data store for arbitrary payload content, we begin
our exploration of the challenges of doing so by focus-
ing on the storage and querying of packet payloads with
well-defined header and content fields (e.g., DNS and
HTTP). These protocols have many of the same issues
described above, but represent a manageable step toward
a more general approach to efficient payload querying.

To achieve our performance goals, we move away
from the relational model of data storage and instead
roll-up packet payloads into application-layer summary
objects that are encoded within a flexible, self-describing
object serialization framework. In this regard, our con-
tributions are threefold. (/) We index the summary ob-
jects by treating them as documents with the application-
layer field-value pairs acting as words that can be indexed
and efficiently searched with bitmap indexes. This ap-
proach allows us to store and index heterogenous pay-
load information with highly-variable protocol schemas
— a task that is difficult, if not impossible, with previ-
ous network data storage systems. The bitmap indexes
also make it possible to relate the payload objects to
network flow records using only simple bit-wise oper-
ations. (2) We introduce a hierarchical indexing scheme
that allows us to answer certain queries directly from in-
memory indexes without ever having to access the data
from disk, thereby enabling the type of lightweight iter-
ative querying needed for forensics tasks. (3) We take

advantage of the inherent redundancy found in many
types of application-layer traffic to devise an effective
dictionary-based string compression scheme for the pay-
load summary objects, while standard block-level loss-
less compression mechanisms are utilized to take advan-
tage of inter-field relationships in objects in order to min-
imize storage overhead and disk access times.

Given the privacy-related challenges in gaining access
to network data containing complete payload informa-
tion, we chose to evaluate our approach with two datasets
containing DNS and truncated HTTP data that we col-
lected at the University of North Carolina (UNC). The
first dataset contains over 325 million DNS transactions
collected over the course of five days. We use that dataset
to compare our performance to that of the SiLK net-
work flow toolkit [25] and Postgres SQL database, both
of which are commonly used within the network analy-
sis community to perform security and forensic analysis
tasks [14, 23]. The second dataset is collected over 2.5
hours and contains over 11 million DNS and HTTP con-
nections making up 400GB of packet trace data. We use
that dataset to explore how well our approach handles
heterogenous objects. The results of our experiments
show that our approach reduces the volume of the DNS
traffic that need be stored by over 38% and HTTP traffic
by up to 97%, while still preserving the ability to perform
detailed queries on the data in a matter of seconds. By
comparison, using a relational database approach con-
taining tables for the flow and payload schemas increases
the data volume by over 400% and results in extremely
slow response times.

2 Background and Related Work

One of the most common data storage approaches for
network data is the so-called scan-and-filter paradigm. In
this approach, raw network data is stored in flat files with
standardized formats. To fulfill a given query, the analy-
sis tool reads the entire data file from disk, scans through
the contents, and applies one or more filtering criteria to
select the pertinent records. The SiLK toolkit [25] and
TCPDump are examples of this approach for network flow
logs and packet traces, respectively. The ownside is that
it requires the entire dataset to be read from disk, which
is a relatively low-bandwidth process.

The simple scan-and-filter approach can be improved
through the use of indexing methodologies to target disk
access to only those records that meet the requirements
of the user’s query. As an example, the TimeMachine
system [17] stores truncated packet data and uses hash-
based indexing of packet headers to improve perfor-
mance. However, TimeMachine is unable to index pay-
load contents and each file found with the index must
still be read from disk in its entirety even if only a single
packet is requested.



One natural extension to the above is to divide packet
data across machines and parallelize queries using dis-
tributed computing frameworks, such as MapReduce [11]
or Hadoop [5]. Unfortunately, the computing resources
necessary to take advantage of these frameworks are not
always easily accessible to forensic analysts, and even
organizations with significant computational resources
(e.g., Google, Twitter) have acknowledged that simply
parallelizing brute force data retrieval methods will not
provide adequate performance [19]. In fact, Google
developed a non-relational, column-oriented data store,
called Dremel [18], specifically to address the issue of
efficient data organization in distributed computing en-
vironments. Even so, Dremel does not support indexes
and still resorts to scan-and-filter approaches to match
attributes from different columnar files.

Beyond the simple scan-and-filter approach, tradi-
tional relational databases are also often used to store
and query network data [9, 15]. A relational database al-
lows data that conforms to the same static schema to be
grouped together into tables, often with each row of data
stored contiguously on disk (i.e., row-oriented). These
databases provide a generic framework for storing a wide
variety of data, and offer advanced indexing features to
pinpoint exactly the records requested by the user. Al-
though the relational databases offer these useful fea-
tures, the row-oriented organization of the data is inef-
ficient for network data queries that inspect only a small
subset of discontiguous fields [6]. Additionally, the rigid
schema structure of the database would result in hun-
dreds of tables (one per application-layer protocol) with
sparsely filled columns that require the use of expensive
join operations to retrieve payload fields.

A more efficient approach for storing network data is
to use a column-oriented database, where each column
is stored independently as a sequence of contiguous val-
ues on disk. Column-oriented databases follow the same
relational structure of rigid data tables, but enable effi-
cient queries over multiple fields. For that reason, several
column-based data stores have been developed specifi-
cally for network flow data [6, 12, 16, 24]. These sys-
tems create columns for each of the standard fields found
within all flow records (e.g. IP, port, etc.), and then apply
indexing methods to quickly answer multidimensional
queries over several fields. When considering the vari-
ety and variability of payload data, however, the column-
oriented approach suffers from some of the same short-
comings as row-oriented relational databases; namely,
they require thousands of sparsely populated columns
and table joins to store payload data for the most com-
mon application-layer protocols.

To our knowledge, only one other work has examined
the problem of enabling forensic analysis of packet pay-
load data. In this work, Ponec et al. [21] discuss how

to capture short, overlapping windows of payload data
and encode that data in memory-efficient data structures,
similar to Bloom filters. The analyst then queries the
data structure for a known byte sequence to determine
if the sequence occurs within the data. While this solu-
tion can significantly reduce the storage requirements for
payload data, it limits opportunities for exploratory data
analysis since it can only be used to determine whether a
previously-known byte sequence exists and cannot actu-
ally return the raw data (or any summaries thereof).

In designing our approach we purposely move away
from the rigid relational database paradigm and instead
draw inspiration from document-oriented databases (e.g.,
[1, 3]) that store self-describing document objects with
flexible data schemas. By using this approach, we ac-
commodate the strongly heterogenous nature of payload
data and the variability of application-layer protocols.
We combine these technologies with proven column-
oriented database technologies, like bitmap indexes [13],
to create a hybrid system that combines efficient storage
of flow data in a column-oriented format with flexible
storage of packet payload data.

3 Approach

The primary goal of our network data storage system is
to enable fast queries over both network flow data and
packet payload information. Our intention in this work is
to develop an approach that takes advantage of the prop-
erties of network data to intelligently reduce workload
and make payload analysis accessible to analyst with
limited resources. As a result, we focus our evaluation
on a single machine architecture to gain a better under-
standing of the key bottlenecks in the query process so
that they may be mitigated. At the same time, we ensure
our framework can naturally scale to take advantage of
distributed computing resources by partitioning the data
and developing a hierarchical system of indexes for both
flow and payload information.

Before delving into the specifics of our approach, we
first provide a basic overview of the storage and retrieval
components. In the storage component, shown in Figure
1, incoming packets and their payloads are collected into
bidirectional network flows in a manner similar to that
proposed by Maier et al. [17]. After a period of inactivity,
the flows are closed and packet payloads are aggregated.
If the application-layer protocol contained within the ag-
gregated payload is known to the storage system, it dis-
sects the protocol into its constituent fields and their val-
ues, resulting in a set of flow and payload fields. When a
sufficient number of closed flows have accumulated, the
flows are indexed and written to one of many horizontal
data partitions on the disk. The flow fields are written
into a column-oriented store, while the associated pay-
load attributes are serialized and compressed into flexi-
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Figure 1: Storing payload data.
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Figure 2: Processing a query.

3.1 Storage flow fields that occur in every network flow record?, as

Aggregation and Partitioning. Intelligently storing it provides the best performance for the type of random-
data on disk improves performance by simultaneously ~ access queries made by forensic analysts [6, 23].

reducing the storage overhead and the amount of data Our approach to storing payload information is to re-
that must be retrieved from high-latency disks. In or- ceive dissected payloads from one or more sensor plat-
der to reduce the data footprint, we aggregate all of the ~ forms (e.g, Bro [28]) and extract the values from cer-
packets in a connection into network flows according  tain fields deemed important by the analyst. These field
to the five-tuple of source and destination IP address, ~ Vvalues are then stored in summary payload objects that
source and destination ports, and protocol. As with pre- 2Currently we support attributes of source and destination IP, source

vious approaches [6’ 12’ 137 24]» we utilize a column- and destination ports, protocol, start time, duration, TCP flags, byte and
oriented data store for the standard set of integer-based packet count, but other attribute can be incorporated easily.




are instantiated from a set of application-layer protocol
templates as illustrated by the DNS template example in
Figure 3. Once the object is generated in memory, it is
serialized to disk with a lightweight object serialization
framework with self-describing data schemas [4]. The
object serialization framework allows us to accommo-
date for the strongly heterogenous nature of payload data
by individually defining the output schema for each pay-
load object we serialize based on the extracted fields and
values, rather than forcing the data to adhere to a static
schema, as is the case in traditional relational databases.
Moreover, if the object dissector encounters a payload
for which it does not have an object template, we can
still store the raw payload data in the same way by using
an object with a single field (i.e., “raw payload”) whose
value is the byte sequence for the aggregated payload.

One unique feature of network data storage is that it
does not require the updating capabilities normally asso-
ciated with traditional databases. That is, once the data
is written to disk, there is no need to update it. To take
advantage of this property, we implement a horizontal
partitioning scheme where groups of records are broken
into independent partitions. In doing so, we can write
all records in a partition at once, create indexes on that
data, and never have to perform writes to that partition
or index ever again. The use of horizontal partitioning
also has the added benefit of providing natural bound-
aries where the data can be distributed among multiple
servers or archived when space is limited.

struct dns_rr {
std:: string domain;
proto :: RecordType type;
int32_t ttl;
std:: string response;

+

struct DNSMessage {
std::string queryDomain;
int32_t queryld;
proto :: RecordType recordType;
array <proto ::dns_rr > additional;
array<proto::dns_rr > answer;
array<proto ::dns_rr > nameServer;

Figure 3: Example Object Definition.

Compression. Aside from aggregation of packet infor-
mation into flow-based fields and payload objects, the
nature of many application-layer protocols makes them
particularly well-suited to the use of lossless compres-
sion mechanisms. In particular, many application-layer
protocols, such as DNS and HTTP, exhibit high levels
of string redundancy [10]. To take advantage of this re-

dundancy, we apply two compression mechanisms to our
payload data to ensure we need only read a minimum of
information from disk.

The first compression scheme employs a dictionary-
based encoding of all strings in the payload objects. In a
dictionary-based encoding scheme, long byte strings are
replaced with much smaller integer values that compress
the space of strings accordingly. Undoubtedly, we are
not the first to take advantage of this observation. Bin-
nig et al. [7], for example, showed that string compres-
sion can be effective even for data with extremely high
cardinality. However, their approach cannot be readily
applied in our setting as it is not well suited for stream-
ing data sets, like network traffic. Fortunately, we found
that a rather straightforward hash-based approach that
maps strings to integer values as the packets are dissected
works extremely well in practice.

Our second compression mechanism uses stan-
dard Lempel-Ziv-Oberhumer (LZO) encoding compres-
sion [32] to compress the serialized payload objects af-
ter they have been dictionary-encoded. LZO is notable
for its decompression speed, which is ideal for network
data that will be written once and read multiple times.
It is also particularly efficient at compressing highly-
redundant but variable-length patterns.

As we show later, this integration of compression
techniques dramatically reduces response times through
reduced data footprint, and helps offset the storage
overhead introduced by indexing methods that help us
quickly retrieve data.

3.2 Indexing and Retrieval

Avoid Scan-and-Filter. Scan-and-filter approaches to
data retrieval are slow because of the need to read the
entire dataset to find records of interest. The standard
solution to this problem is to apply indexing to the data
to quickly determine the location of the data that satis-
fies the query. Construction of these indexes, however,
requires careful planning in our setting. For one, net-
work data is multi-dimensional and an analyst will of-
ten not know exactly what she is looking for until she
has found it [6, 23]. Therefore, we must support indexes
across all of the stored flow and payload fields, as well
as combinations of those fields. Furthermore, it is also
important that these indexes can be built quickly and ef-
fectively support large data sets.

In this work, we use two separate indexing mecha-
nisms; one for flow fields and another for payload fields.
For flow fields, we use bitmap-based indexes [6, 12,
13, 24]. Simply put, a bitmap index is a pair contain-
ing a field value and a bit vector where a bit at posi-
tion i indicates the presence or absence of that value
in record i. The bitmap indexes benefit from being
highly-compressible [31], enabling combination of in-



dexes through fast bit-wise operations (i.e., AND and
OR), and allowing real-time generation as data is being
stored [13]. Each flow field stored has its own bitmap
index. We refer the interested reader to Deri et al. [12]
for an in-depth discussion on bitmap indexes.

In contrast, packet payload data is far more difficult
to index because it is composed of an arbitrary num-
ber of attributes that have high cardinality and varying
length. Therefore, we cannot take the same approach
used in indexing flow data. However, we can model our
summary packet payload objects as documents by con-
sidering the field-value pairs (e.g., ‘query domain =
www.facebook.com’) as words to be indexed. Specif-
ically, we create an inverted-term index that stores the
field-value pairs across all payload objects in lexico-
graphical order, grouped by field name. Each field-value
pair is associated with a bitmap indicating the records
where the pair is found, as shown in Figure 4. In this
way, we can now support the ability to search for specific
criteria within the payload, including wildcards (e.g.,
‘Http.UserAgent:Mozilla/5.0%’). Additionally, the
payload bitmap index can be combined with those of the
network flow columns to tie both data stores together.
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Figure 4: Indexing packet payload content.

Abstraction via Indirection. Although it is possible
to use a single, monolithic index for each of the flow
and payload fields in the data store, they are likely to
become unmanageably large after a few million records
have been added. Once the cardinality of those indexes
becomes sufficiently large, even reading the index from
disk would take a non-trivial amount of time and would
likely be difficult to fit into memory. Another approach
would be to have indexes associated with each of the hor-
izontal partitions of the data. In that case, one would
incur significant disk access penalties by reading the in-
dexes for every partition even if it contains no records
of interest. To address these issues, we designed a hier-
archical indexing approach, similar to that of Sinha and
Winslett [26], to efficiently exclude partitions that cannot

satisfy a query. Our framework uses a root index to pick
candidate partitions, and then processes the partition-
level indexes to resolve queries to specific records.

Data Fields
Flow Fields Payload Fields
l DestIP H SourcelP l l Http.Host H Http.Uri l
l DestPort H SourcePort] l Http.UserAgent H Http.Method l
l StartTime H Duration l l Dns.Answer.Type HDns.Answer.Domainl

l PktCount H ByteCountl l H l

l Protocol ,H TcpFlags ]- l\pns.Query.Type H Dns.Query.Domain l
Q Z —— ’,

Indexing Data Structures

Root Bitmap Index

Partition 1 Partition 2 Partition P
Bitmap Index Bitmap Index Bitmap Index

Figure 5: Structure of the datastore

Each of the network flow columns, plus the payload
store, has its own root index for locating partitions that
satisfy queries, as well as partition-level indexes for lo-
cating matching records. Both the root and partition-
level indexes are organized as described above, with each
value associated with a bitmap indicating the partitions
and records it occurs in, respectively. The key differ-
ence between the root and partition index is that the root
index is constantly updated as records are added to the
data store, whereas partition-level indexes are written all
at once when the partition is written to disk. Therefore,
we make use of a B-tree data structure at the root index
for each flow field, which allows us to efficiently insert
and update the bitmaps associated with the field values.
Meanwhile, the root index for payload objects is struc-
tured as a document index similar to those found in the
partitions, except that the bitmaps for each of the field-
value pairs point to the appropriate partitions.

The root and partition-level indexes are ideal for find-
ing attributes that appear rarely in the data. There-
fore, we may use them to answer counting queries us-
ing only the in-memory indexes. The advantage of these
types of index-only queries is that they are relatively fast
compared to standard queries because they do not have
to access data from high-latency disks. One example
of such a query might be: ‘SELECT Count (*) WHERE
Protocol=6 AND DestPort=80’.

The ability to support index-only queries is impor-
tant, if for no other reason than it improves the inter-
active feedback loop that is common in forensic analy-



sis [6, 23]. There, the typical modus operandi is to start
with a single query that may return far too many records,
and then repeatedly refine the search criteria until an ac-
ceptable number of matches are brought forth. Note also
that it is possible to extend the current two-level index hi-
erarchy to an arbitrary number of levels, which facilitates
indexing of partitions that are hierarchically distributed
within a computing cluster, thereby enabling multiple
levels of resolution in the index-only queries.

4 Evaluation

In this section, we present an empirical evaluation of our
system using two separate network traces. First, we col-
lected approximately 122 GBs of DNS traffic between
the UNC DNS servers and external servers during five
days in March of 2011. We also collected over 400 GBs
of DNS and truncated HTTP traffic over a few hours dur-
ing a week day in January 2012. The specifics of both
datasets are shown in Table 1.

Our framework was built as a shared-library and was
designed to receive events from front-end data collec-
tion and sensor products. For the purposes of our eval-
uation, we integrated our framework with the Bro In-
trusion Detection System and collected both DNS and
HTTP events. The packets from these events were aggre-
gated offline into flow records with associated payload
objects, as described in Section 3. The size of each of
our horizontal partitions was set to one million records
(k = 1M). We chose this value based on empirical re-
sults that showed that this choice provided a reasonable
balance between large index file sizes and the overhead
induced by opening large numbers of files.

All experiments discussed in this section were per-
formed on an Ubuntu Linux server with dual Intel Xeon
2.27 GHz processors, 12 GBs RAM, and a single 2TB
7200 RPM local SATA drive. We chose this configu-
ration because it resembles platforms typically used by
researchers and practitioners for network forensic inves-
tigation. The results of our experiments were averaged
over five runs of each query. Memory and disk caches
were cleared between each query.

4.1 Query Types

To better assess the benefits of our approach in quickly
retrieving network data, we performed a series of queries
that span three categories typically seen in forensic in-
vestigations. These queries are similar to those found in
previous work focusing on the storage and retrieval of
network data [6, 17, 20, 24], and represents the types of
queries used by security analysts [23]:

e Heavy Hitters: Returns the majority of records in
the datastore. Such queries are typically used to
gather global statistics about the dataset. This class
of queries serves as a good stress test for our ap-

Trace 1: DNS traffic

Length of Trace 5 days
Average DNS queries per day 66.5 M
Average no. of clients per day 272,945
Original raw trace 122 GB
LZO compressed raw trace 55 GB
Data store (uncompressed) 155 GB
Data store (dict. compression) 83 GB
Data store (dict. + LZO) 75 GB

Trace 2: DNS + HTTP traffic
Length of Trace 2.5 hrs
Number of Connections 111 M
Original raw trace 400 GB
LZO compressed raw trace 358 GB
Data store 12 GB
Number of payload fields 1700+
Number of distinct payload field values 11 M+

Table 1: Data Summary

proach, and also serves as a point of comparison
for sequential scanning techniques. Heavy Hitter
queries are also used as a baseline for showing how
indexes can affect query times. An example of
such a query might be: ‘SELECT SourceIP WHERE
Protocol = 17 OR Protocol=6’.

Fartition Intensive: Returns records from each
partition, but not the majority of the records
from those partitions. Analysts might use these
types of queries in the early stages of their in-
vestigations (e.g., when looking for a specific
IP address responsible for a significant amount
of traffic or for activity on a common port).
Partition Intensive queries are used to show the
speedup achieved because of our indexing struc-
tures. An example of such a query might be:
‘SELECT Dns.Query.Type, Dns.Query.Id
WHERE Payload.Dns.Query.Domain =
www.facebook.com’.

e Needle in a Haystack: Returns a few records

from the datastore. These types of queries might
arise in cases where an analyst is searching for
a rare event (e.g., traffic to a rogue external
host on certain ports). This class of queries
demonstrate the effectiveness of hierarchical in-
dexing, as well as the overhead involved with the
querying system. An example of such a query
might be:  ‘SELECT SourceIP, SourcePort
WHERE Payload.Dns.Query.Domain =
www.dangerous.com’.



4.2 Results

Our first set of experiments were performed on the 122
GB DNS traffic trace. This dataset is interesting because
it has a large volume of connections (over 325 million).
Since the DNS payload objects store almost all attributes
from the DNS packets, the data stored within our sys-
tem is extremely dense (i.e., large number of payload at-
tributes per flow record), and thus serves as a good test
of data retrieval capabilities.

To gain a deeper understanding of the parameters that
affect overall query performance, we first vary the num-
ber of attributes (n € {1,2,4}) returned in the SELECT
clause while keeping the number of attributes specified
in the WHERE clause constant. Furthermore, we measure
the differences between flow and payload attributes in
the queries. Four queries were issued for each of the cat-
egories listed in Section 4.1. These queries return flow
and payload attributes using the available indexes.
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Figure 6: Response times for returning flow attributes filtered

using flow indexes (grey) and the payload index (black).

Returning Flow Attributes. Figure 6 (grey bars)
shows the performance when returning 1, 2, or 4 flow-
based attributes filtered by a flow index. Response times
are fast because queries operate on small column files
and indexes; therefore, there is no parsing overhead and
disk I/O times are reduced. On average, Heavy Hitter
query times using flow indexes (6(a)) are lower than Par-
tition Intensive queries (6(b)). While this may seem odd,
the results can be explained by the fact that there is sig-
nificant overhead associated with reading the many at-
tribute indexes used in the WHERE clause of the Partition
Intensive query, whereas the Heavy Hitter query used
only a single, low-cardinality index.

Figure 6 (black bars) shows the query performance
when returning 1, 2, or 4 flow-based attributes filtered by
the payload index. These types of queries are slower be-

cause payload indexes are much larger in size than those
for flows because of their cardinality and the variability
in length of the indexed values. Even though the queries
are slower, notice that even a Heavy Hitter query that re-
turns well over 200M records (n = 4 in Figure 6(a)) still
completes in roughly one minute. In addition, because
our hierarchical indexes efficiently prune irrelevant par-
titions, Needle in the Haystack queries are extremely fast
in all cases — each with sub-second response times.

Returning Payload Attributes. Next, we investi-
gate the query performance when returning payload-
based attributes instead of flow-based attributes in the
query. Payload-based queries are slower than flow-
based queries because payload object files are larger,
and such objects have parsing overhead. In order to
improve query performance, we applied various com-
pression techniques and compared the resulting query
times. Specifically, we compared uncompressed, dictio-
nary compressed, and dictionary+LZO compressed pay-
load versions of our data store. Varying n in our experi-
ments had little impact since the majority of the perfor-
mance bottleneck can be attributed to loading and pars-
ing the payload objects. Therefore, we only show results
for n = 2 since the results for n = 1,4 are similar.
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Figure 7: Return payload attributes filtered using a flow-based
index (payload queries n = 2).

Figures 7 and 8 shows the performance on payload
queries for n = 2 in experiment. For Heavy Hitter queries
on flow indexes (Figure 7), we achieve more than 3 times
speedup with dictionary-based and LZO compression en-
abled, and a 5-fold improvement for Partition Intensive
queries. This improvement is a direct result of the reduc-
tion in the size of payload files as stored on disk. Needle
in a haystack queries, on the other hand, retrieve little
data from disk so there is little overhead when operating
on uncompressed stores. In fact, the opposite is true: dic-
tionary+LZO compressed queries are slower because the



storage manager must decompress the entire file before
reading payload records from disk.
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Figure 8: Return payload attributes filtered using a payload-
based index (payload queries n = 2).

Figure 8 shows the results for payload-based queries
using payload indexes. The results suggests that the over-
head of processing payload indexes has a small impact
compared to the overhead of reading and parsing the pay-
load objects. Heavy hitter, compressed payload queries
are nearly 2.8 times as fast as uncompressed payloads,
while Partition Intensive queries are over 4.6 times faster.

Overhead Analysis. Next, we consider the increase
in size of our data store over time and the component-
wise overhead when performing payload queries. Figure
9 shows the growth of various framework components
(using dictionary+L.ZO compression) over the duration
of data collection for the DNS dataset. Note that due
to space constraints the results are depicted on a log-
linear plot. The graph shows that components grow at
a very slow linear scale as new data is added. Some
components, like the root flow indexes and the dictionary
used for string compression, experience incredibly slow
growth because of the reuse of field values that naturally
occurs in network protocols.

Table 2 presents the average processing time spent in
various components for a set of payload-based Heavy
Hitter queries using payload indexes. The results show
that the majority of time is spent in decoding objects and
performing memory management tasks related to creat-
ing the result sets to be returned to the client — both of
which are areas where optimizations are required to fur-
ther improve query performance.

Performance Comparison. For comparison purposes,
we also examined the performance of traditional rela-
tional database systems (e.g., [9, 15]) and toolkits for
network forensics [14]. Specifically, we use Postgres
version 9.0 and SiLK version 2.4.5. In the case of Post-

Component %
Payload Object Decoding 37.0%
Memory Allocation for Result Set | 30.0%
Payload I/0 20.0%
LZO Decompression 6.4%
Miscellaneous 3.4%
Processing Payload Indices 3.2%

Table 2: Processing breakdown of a Heavy Hitter payload
query using the payload index.

Component Size Bytes (lo!

Time

Payload Index (35G)— Root Payload Index(17G3

Payloads(8G Root Flow Index(21M
Flow Inydex(?,.(7G)9E Dictionary(64 .1M)}e_
Flows(10.3G

Figure 9: Growth of the components over time for Trace 1.

gres, we created four tables: a table for flow attributes,
and three tables to hold DNS Answer, Name Server, and
Additional resource records, respectively (see Figure 3).
The tables are linked to support joins, and indexes were
generated on all fields. The resulting data store was al-
most 5 times as large as the original dataset, and took 8
days to generate. We used a custom application to effi-
ciently query the Postgres database. For the SiLK exper-
iments, we generated the data store using rwflowpack,
and all records were partitioned hourly following the typ-
ical usage of SiLK [25]. The resulting datastore was
7.1GBs. For our queries, the accompanying rwfilter
utility was used?.

The results for a series of queries following the cat-
egories given in Section 4.1 are provided in Table 3.
Notice that the relational database approach consistently
performs the worst in all but the Needle in a Haystack
queries on flow-based attributes. While still slower than
our approach, the use of indexes enable it to avoid scan-
ning all records as is the case with SiLK. SiLK’s perfor-
mance remains constant across all the queries because it
uses a sequential scan-and-filter approach whose perfor-
mance is linear to the size of the data.

Our efforts to compare the performance of payload-
based queries was also quite telling. While we had origi-
nally hoped to explore Heavy Hitter queries that involved
joins between the flow table and the DNS response ta-

3For fairness, all output was directed to /dev/null to minimize over-
head of console output.



Flow-based Heavy | Partition Needle
Queries Hitters | Intensive | Haystack
Postgres 18.1m 9.5m 2.0s
SiLK 1.8m 1.8m 1.8m
Our approach 2.5s 30.5s 0.04s
Simple queries, no joins required
Payload-based | Heavy | Partition Needle
Queries Hitters | Intensive | Haystack
Postgres 7.6m 9.7m 1.6s
Our approach 9.7m 3.3m 0.1s
Complex queries, joins required
Payload-based | Heavy | Partition Needle
Queries Hitters | Intensive | Haystack
Postgres >2h >2h 3s
Our approach 30m 2.5m 0.1s

Table 3: Comparison to other approaches.

bles in the Postgres database, the response time was so
slow that we terminated most of the queries after two
hours (shown in Table 3 as > 2h). For a more simplified
evaluation, we manually altered the flow table to simply
include certain DNS-related fields directly (namely, do-
main and record type) and then issued queries directly
on this altered table to avoid the costly join operations.
In this case, the Heavy Hitter payload queries performed
similarly in both Postgres and our data store. However,
for multi-dimensional Partition Intensive and Needle in a
Haystack queries, we again outperform Postgres, return-
ing results in sub-second time in certain cases.

Storing Multiple Object Types. Having established
the performance results of the proposed network data
store, we now turn our attention to investigating the im-
pact of heterogeneous objects on storage and query per-
formance. In the experiments that follow, we use the
DNS+HTTP dataset that contains over 400 GBs of DNS
and truncated HTTP traffic. Due to privacy reasons, we
were limited to storing only 500 bytes of each HTTP
payload and were only allowed to collect that data for
a short time period. To explore the impact of hetero-
geneous data, we use two summary payload objects in
addition to the standard network flow store: the original
DNS object (as in Figure 3) and an HTTP object which
stored the method, URI, and all other available request
and response headers as allowed by the truncated HTTP
packets. All fields were then indexed and compressed.
Unlike the DNS dataset examined earlier in this sec-
tion, this dataset contains only 11.1 million connections
and a large portion of the traffic contents (i.e., actual web
content) are excluded from the payload storage, making
the dataset far less dense in terms of stored information.
As a result, the 400GB packet trace is converted into a
12GB data store, including indexes and compressed data
files. We tested the query performance of the more di-
verse data store using a select set of queries that mirror
the three query classes used earlier. Our Heavy Hitter

query returned all 11.1 million records in the data store
in 52 seconds on average. The Partition Intensive query
returned 6,000 records in 7.6 second on average. Finally,
the Needle in a Haystack query returned one HTTP and
one DNS record in under 0.4 seconds.

We believe this extended evaluation aptly demon-
strates the flexibility and querying power of our ap-
proach. In particular, it shows we can store and index
arbitrary object schemas, and provide high performance,
robust queries across payloads. Furthermore, we are
able to customize our summary payload objects and uti-
lize compression techniques to considerably reduce the
amount of data stored, while still storing important fields
that are useful for forensic analyses.

5 Case Study

As alluded to earlier, post-mortem intrusion analysis has
become an important problem for enterprise networks.
Indeed, the popular press abounds with reports docu-
menting rampant and unrelenting attacks that have led to
major security breaches in the past. Unfortunately, many
of these attacks go on for weeks, if not months, before
being discovered. The problem, of course, is that the
deluge of data traversing our networks, coupled with the
lack of mature network forensic platforms, make it diffi-
cult to uncover these attacks in a timely manner. In or-
der to further showcase the utility of our framework, we
now describe how it was used in practice to identify UNC
hosts within the DNS trace that contacted blacklisted do-
mains or IP addresses. To aide with this analysis, we also
obtained blacklists from a few sources, including a list of
several thousand active malicious domains discovered by
the Notos system of Antonakakis et al. [2].

First, for each entry in the blacklist, the root payload
index was queried to assess whether these blacklisted
domains appeared in the trace. Since the root index is
sorted lexicographically by field value and there is no
need to touch the partitions themselves, these queries re-
turn within milliseconds. The result is a bitmap indicat-
ing which partitions the domain appears in. Using these
queries, we quickly pruned the list to 287 domains.

Next, we investigate how many records were
related to DNS requests for these blacklisted do-
mains by issuing a series of index-only queries (e.g.,
‘SELECT Count (*) WHERE DNS.QueryDomain =
www.blacklisted.com’) to count the number of
matching records. That analysis revealed that over
37,000 such requests were made within a one week
period. Digging deeper, we were able to quickly
pinpoint which internal IPs contacted the blacklisted
domains (e.g., ‘SELECT SourceIP, Time WHERE
DNS.QueryDomain = www.blacklisted.com’). To
our surprise, we found at least one blacklisted request in
every minute of the dataset. More interestingly, roughly



33% of those requests came from a single host attempt-
ing to connect to a particular well-known malicious
domain name. Correlation with external logs showed
that the machine in question was indeed compromised.

Encouraged by the responsiveness of the data store,
we turned our attention to looking for additional evi-
dence of compromises within the data. In this case, we
issued wildcard queries for domains found among a list
of several hundred domains extracted from forensic anal-
ysis of malicious PDF documents performed by Snow
et al. [27]. Many of these domains represent malicious
sites that use domain generation algorithms (DGAs)*.
To search for the presence of such domains, we simply
issued wildcard queries on payload fields. For instance,
to find domain names from the cz.cc subdomain,
which is known to serve malicious content [22, 29],
we issued a query of the form: ‘SELECT SourcelP,
Time, DNS.QueryDomain WHERE DNS.QueryDomain
= *,cz.cc’ and discovered 1,277 matches within the
trace. While we strongly suspect that many of the
connections identified represent traffic from compro-
mised internal hosts, we are unable to confirm that
without additional network traces. Nevertheless, all of
the aforementioned analyses were conducted in less
than fifteen minutes, and yielded valuable insights
for the UNC network operators. Without question,
the framework was particularly helpful in supporting
interactive querying of network data.

6 Summary

Packet payload data contains some of the most valuable
information for security analysts, and yet it remains one
of the most difficult types of data to efficiently store and
query because of its heterogeneity and volume. In this
paper, we proposed a first step toward a fast and flexi-
ble data store for packet payloads that focuses on well-
defined application-layer protocols, with a particular em-
phasis on DNS and HTTP data. To achieve these goals,
we applied a combination of column-oriented data stores,
flexible payload serialization, and efficient document-
style indexing methods. Our evaluation showed that our
approach for storage of payload content was faster and
more flexible than existing solutions for offline analy-
sis of network data. Finally, we underscored the utility
of our data store by performing an investigation of real-
world malware infection events on a campus network.
Overall, our evaluation brought to light several impor-
tant insights into the problem of large-scale storage and
querying of network payload data. The performance of
our data store in returning flow attributes, for instance,
serves as independent confirmation of the benefits of ag-
gregating packet-level data and using column-oriented

4See, for example, “How Criminals Defend Their Rogue Networks”
athttp://www.abuse.ch/?tag=dga

approaches to store data with well-defined schemas.
Likewise, our results illustrated the power of hierarchical
indexing and fixed-size horizontal partitions in both min-
imizing high-latency disk accesses and enabling the fast
index-only queries that are key to interactive data anal-
ysis. It is also clear that document-based indexing and
flexible object serialization are promising technologies
for storing network payloads with highly dynamic data
schemas and complex data types. This is particularly true
when considering network data with high levels of redun-
dancy, where we can use dictionary-based compression
to limit storage overhead and the cardinality of payload
indexes. Unfortunately, the document-oriented approach
is not without its own pitfalls, since our evaluation also
indicated that there are non-trivial amounts of overhead
associated with deserializing the payload objects. Mov-
ing forward, we hope to build off of the insights from
our offline data storage framework to incorporate real-
time storage capabilities and to extend the system to dis-
tributed computing environment.
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