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ABSTRACT

Unfortunately, the computers we use for everyday activities can
be infiltrated while simply browsing innocuous sites that, unbe-
knownst to the website owner, may be laden with malicious adver-
tisements. So-called malvertising, redirects browsers to web-based
exploit kits that are designed to find vulnerabilities in the browser
and subsequently download malicious payloads. We propose a new
approach for detecting such malfeasance by leveraging the inherent
structural patterns in HTTP traffic to classify exploit kit instances.
Our key insight is that an exploit kit leads the browser to download
payloads using multiple requests from malicious servers. We cap-
ture these interactions in a “tree-like” form, and using a scalable
index of malware samples, model the detection process as a sub-
tree similarity search problem. The approach is evaluated on 3800
hours of real-world traffic including over 4 billion flows and re-
duces false positive rates by four orders of magnitude over current
state-of-the-art techniques with comparable true positive rates. We
show that our approach can operate in near real-time, and is able to
handle peak traffic levels on a large enterprise network — identify-
ing 28 new exploit kit instances during our analysis period.

1. INTRODUCTION

Today, our computers are routinely compromised while perform-
ing seemingly innocuous activities like reading articles on trusted
websites [43] (e.g., the NY Times). All too often, these compro-
mises are perpetrated via complex interactions involving the ad-
vertising networks that monetize these sites. Since crime typically
follows the money, it is not too surprising then that miscreants have
turned their attention to exploiting advertising networks as a way
to reach wider audiences. In 2012 alone, web-based advertising
generated revenues of over $36 billion [28], and its wide-spread
reach makes it an excellent target for fraudsters and deviants. Fur-
thermore, the many players in the online advertising industry —
publishers (who display ads), advertising networks (who deliver
ads), and advertisers (who create content) — offer a multitude of
vantage points for attackers to leverage, and many of these com-
promises can go unnoticed for extended periods. A well known ex-
ample is the widely publicized case involving advertising networks
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from Google and Microsoft that were tricked into displaying ma-
licious content by miscreants posing as legitimate advertisers [16].
Sadly, such abuses are not isolated incidents and so-called malver-
tising has plagued many popular websites [29], exploited mobile
devices [33], and have even been utilized as vessels for botnet ac-
tivity [3]. For the most part, these exploits are delivered over HT TP,
and detecting and defending against such attacks require accurate
and efficient analytical techniques to help network operators better
understand the attacks being perpetrated on their networks.

Many of these HTTP-based attacks are launched through the
use of exploit kits [9, 6], which are web-based services designed
to exploit vulnerabilities in web browsers by downloading mali-
cious Java, Silverlight, or Flash files. Exploit kits, such as Fiesta
and Blackhole represent an entire software-as-a-service subindus-
try. The exploitation of a user’s system typically follows a four-step
process wherein a user navigates to a website (e.g., CNN) that —
unbeknownst to the user — contains an external link (e.g., an adver-
tising link) with an injected i frame that in turn directs the user’s
browser to an invisible exploit kit landing page. At that point, infor-
mation about the victim’s system is passed along to the attacker’s
server, which is then used to select a malicious exploit file that is
automatically downloaded. The downloaded file exploits a vulner-
ability on the system that allows the attacker to install a malicious
binary or otherwise control the victim’s machine.

Security analysts typically defend enterprise networks from these
attacks using network monitoring devices (such as intrusion detec-
tion systems) that search HTTP traffic as it passes through the net-
work’s edge for signature matches, statistical patterns or known
malicious domain names. Unfortunately, the attack landscape con-
stantly changes as the attackers attempt to hide their nefarious web-
based services and avoid blacklisting. As aresult, current approach-
es typically incur high false positive and negative rates.

In this paper, we explore a network-centric technique for identi-
fying agile web-based attacks with a focus on reducing false posi-
tives over existing approaches while maintaining or improving false
negatives. We improve detection rates by leveraging the struc-
tural patterns inherent in HTTP traffic to classify specific exploit
kit instances. Our key insight is that to infect a client browser,
a web-based exploit kit must lead the client browser to visit its
landing page (possibly through redirection across multiple compro-
mised/malicious servers), download an exploit file and download a
malicious payload, necessitating multiple requests to several ma-
licious servers. Our approach captures the structure of these web
requests in a tree-like form, and uses the encoded information for
classification purposes. To see how this can help, consider the ex-
ample where a user visits a website, and that action in turn sets
off a chain of web requests that loads various web resources, in-
cluding the main page, images, and advertisements. The overall



structure of these web requests forms a tree, where the nodes of
the tree represent the web resources, and the edges between two
nodes represent the causal relationships between these resources.
For instance, loading an HTML page which contains a set of im-
ages might require one request for the page (the root node) and
a separate set of requests (the children) for the images. When a
resource on a website loads an exploit kit, the web requests associ-
ated with that kit form a subtree of the main tree representing the
entire page load. Also, the exploitation is a multi-stage process in-
volving multiple correlated sessions. By providing context through
structure, we can capture the correlation among sessions, thereby
providing improved detection accuracy.

Intuitively, identifying the malicious subtree within a sea of net-
work traffic can be modeled as a subtree similarity problem. We
demonstrate that we can quickly identify the presence of similar
subtrees given only a handful of examples generated by an exploit
kit. In order to do so, we build an index of malicious tree sam-
ples using information retrieval techniques. The malware index is
essentially a search engine seeded with a small set of known ma-
licious trees. A device monitoring network traffic can then query
the index with subtrees built from the observed client traffic. The
traffic is flagged as suspicious if a similar subtree can be found in
the index. We note that our decision to use techniques from the
field of information retrieval is motivated by the fact that these tech-
niques are known to work well with extremely sparse feature sets
(e.g., words and phrases), and the feature space for network anal-
ysis can be equally as sparse. Moreover, in information retrieval,
the desire is to access a set of documents based on a user’s query,
and in most cases, the resulting set typically comprises a very small
portion of the overall set of documents in the data store. Similarly,
in network security, the malicious instances in the dataset tend to
comprise only a fraction of the overall network traffic.

In the remainder of this paper, we present several contributions
including a network-centric approach based on subtree similarity
searching for detecting HTTP traffic related to malicious exploit
kits on enterprise networks. We show that using the structural pat-
terns of HTTP traffic can significantly reduce false positives with
comparable false negative rates to current approaches. We also pro-
vide a novel solution to the subtree similarity problem, by mod-
elling each node in the subtree as a point in a potentially high di-
mensional feature space. Finally, we utilize this technique to iden-
tify agile exploit kits found in a large network deployment.

2. RELATED WORK

Over the past decade, the web has become a dominant commu-
nication channel, and its popularity has fueled the rise of malicious
websites [39] and malvertising as a vector for infecting vulnera-
ble hosts. Provos et al. [26] examined the ways in which web
page components could be used to exploit web browsers and infect
clients through drive-by downloads. That study was later extended
[27] to include an understanding of large-scale infrastructures of
malware delivery networks, and provided overall statistics on the
impact of these networks at a macro level. Their analysis found
that ad syndication significantly contributed to drive-by downloads.
Similarly, Zarras et al. [43] performed a large scale study of the
prevalence of malvertising in ad networks. They showed that cer-
tain ad networks are more prone to serving malware than others.
Grier et al. [9] studied the emergence of the exploit-as-a-service
model for drive-by browser compromise and found that many of
the most prominent families of malware are propagated through
drive-by downloads from a handful of exploit kit flavors.

Since then, detecting malicious landing pages has been a hot
topic of research. The most popular approach involves crawling
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the web for malicious content using known malicious websites as
a seed [15, 17, 18, 8]. The crawled websites are verified using
statistical analysis techniques [17] or by deploying honeyclients in
virtual machines to monitor OS and browser changes [27]. Other
approaches include the use of a PageRank algorithm to rank the ma-
liciousness of crawled sites [18] and the use of mutual information
to detect similarities among content-based features derived from
malicious websites [38]. Eshete and Venkatakrishnan [8] identified
content and structural features using samples of 38 exploit kits to
build a set of classifiers that can analyze URLs by visiting them
through a honey client. These approaches are complimentary to
ours, but require significant resources to comb the Internet at scale.

Other approaches involve analyzing the source code of exploit
kits to understand their behavior. For example, De Maio et al. [6]
studied 50 kits to understand the conditions which triggered redi-
rections to certain exploits. Such information can be leveraged for
drive-by download detection. Stock et al. [34] clustered exploit kit
samples to build host-based signatures for anti-virus engines and
web browsers. Closer to our work are approaches that try to detect
malicious websites using HTTP traffic. Cova et al. [5], for example,
designed a system to instrument JavaScript run-time environments
to detect malicious code execution while Rieck et al. [31] described
an online approach that extracts all code snippets from web pages
and loads them into a JavaScript sandbox for inspection. Unfortu-
nately, these techniques do not scale well, and require precise client
environment conditions to be most effective.

Other approaches focus on using statistical machine learning tech-
niques to detect malicious pages by training a classifier with mali-
cious samples and analyzing traffic in a network environment [31,
2,1, 20, 21, 22, 24]. More comprehensive techniques focus on ex-
tracting javascript elements that are heavily obfuscated or i frames
that link to known malicious sites [26, 5]. Cova et al. [5] and Mekky
et al. [22] note that malicious websites often require a number of
redirections, and build a set of features around that fact. Canali
et al. [2] describes a static prefilter based on HTML, javascript,
URL and host features while Ma et al. [20, 21] use mainly URL
characteristics to identify malicious sites. Some of these approaches
are used as pre-filter steps to eliminate likely benign websites from
further dynamic analysis [27, 26, 2]. Unfortunately, these tech-
niques take broad strokes in terms of specifying suspicious activity,
and as such, tend to have high false positive rates. They also require
large training sets that are often not available. By contrast, we pro-
vide a framework for detecting various flavors of exploit kits, and
utilize the interactions between HTTP flows to reduce false posi-
tives from a small seed of examples.

Yegneswaran et al. [42] describe a framework for building se-
mantic signatures for client-side vulnerabilities packet traces col-
lected from a honeypot. The work shares the similar observation
with ours that correlating flows can help to reduce false positives;
however, our work focuses on the specific problem of detecting
server-side exploit kits using the structure of HTTP traffic. As
such, our approach is different in that we model kits as trees, and
take advantage of structural similarity properties to reduce FPs. We
also use thresholding to control false positive and negative rates.
More recently, Stringhini et al. [35] proposed a learning approach
to detect malicious redirection chains using a proprietary dataset.
The technique requires traffic from a large crowd of diverse users
from different countries, using different browsers and OSes to visit
the same malicious websites in order to train a classifier. Unfortu-
nately, as shown in the work, the approach leads to relatively high
false positives and negatives with modest data labels and can only
detect chains whereby the last node is deemed malicious. By con-
trast, our work does not model client usage patterns and is not lim-



Cluster Related HTTP
Flows by client IP

( Reassemble and
Dissect HTTP
Packets

Network Tap
HTTP Packets

OO0 |
DO

Trees

Build Relationship

Malicious Seed
HTTP Traces

it

o o

Extract and Weight
Features

——eee———

@ ®

Malware Index

&

Node Matching Compare Structural

Similarities .

Classify Subtree as
Malicious

,

Searchable Index of Exploit Samples

Figure 1: High level overview of the search-based malware system.

ited to the presence of redirection chains to identify exploit kits.
Our technique is based on structural similarity; therefore, the last
node in the structure does not need to be malicious. Finally, our
approach is designed to specifically reduce false positives and neg-
atives in light of a small amount of malicious training data.

Subtree Similarity Search Problem: Lastly, we note that the sub-
tree similarity-search problem on large datasets remains an open
research problem. Most proposals require scanning each tree in the
dataset and then applying tree edit distance techniques to prune the
search space. Recently, Cohen [4] combined the general structural
commonalities of trees as well as the uncommon elements to reduce
the number of trees checked in a similarity search. The drawback
of that work is that the indices are 10x the size of the input data and
only works with single-labeled nodes. Our work is based on similar
ideas to Cohen [4] but works on trees where the nodes themselves
have a large number of features. To make the approach practical,
we leverage the sparsity of the feature space in network traffic.

3. APPROACH

For the most part, today’s network-centric approaches for de-
tecting HTTP-based malware use HTTP flows individually when
performing analytics, but doing so can lead to high false positive
rates. By contrast, we focus on the interactions between flows to
identify malicious cases in network traffic in order to reduce false
positives and identify exploit kits — hopefully before they have an
opportunity to exploit a vulnerable client. Our key insight is that to
infect a client, a web-based exploit kit will lead the client browser
to download a malicious payload by making multiple web requests
to one or more malicious servers. We use those multiple requests
to build a tree-like structure and model the problem as a subtree
similarity search problem.

A high-level overview of our approach is shown in Figure 1.
There are two main components: an index of known exploit kits
(Figure 1 (bottom)) and an online component that monitors HTTP
traffic and performs comparisons with the index to identify and la-
bel potentially malicious traffic (Figure 1 (top)).

Indexing stage: In step ©, we collect HTTP traffic samples rep-
resenting client browser interactions with various flavors of exploit
kits (e.g., Fiesta) and convert them into tree-like representations.
Flow-level and structure information are extracted from these trees
(step @) and then stored in a tree-based invertible index (step ®)
called a malware index as described in more detail in Section 3.2.

Classification stage: HTTP traffic is monitored at the edge of an
enterprise network, and packets are dissected and reassembled into
bidirectional flows (see step @). The reassembled flows are grouped
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by client IP addresses (step @) and assembled into tree-like struc-
tures (step ©, § 3.1) called web session trees. The nodes in the web
session tree are then mapped to “similar” nodes of the trees in the
malware index using content features (step @, § 3.3.1), and finally,
the mapped nodes are structurally compared to the trees in the in-
dex to classify subtrees as malicious (step @, § 3.3.2). Given a web
session tree and an index of malware trees, the goal is to find all
malicious subtrees in the tree that are similar to a tree in the index.

3.1 On Building Trees

In both components of our system (indexing and classification),
HTTP traffic is grouped and converted into tree-like structures called
web session trees. We use a two-step process to build these session
trees for analysis. The first step in the process is to assemble HTTP
packets into bidirectional TCP flows and then group them based on
their client IP addresses. Flows are ordered by time, and then asso-
ciated by web session using a technique similar to that used by [hm
and Pai [14] and Provos et al. [27]. A web session tree is defined
as all HTTP web requests originating from a single root request
over a rolling time window of a tuneable parameter At,, (empiri-
cally set to five seconds in our implementation). A node in the tree
is an HTTP flow representing some web resource (e.g., webpage,
picture, executable, and so on) with all related flow attributes in-
cluding URL, IP, port, and HTTP header and payload information.
An edge between nodes represents the causal relationship between
the nodes (e.g., a webpage loads an image). For example, a client
surfing to Facebook creates a single root request for the Facebook
main page (i.e., the root node of the web session tree), which in
turn loads images and JavaScript files (i.e., the child nodes). All
related files form a client “web session” and the relationships be-
tween these resources form a tree-like structure as outlined below.

Each HTTP flow is compared with flow groups that have been
active in the last At,, window for the associated client IP address.
Flows are assigned to a particular group based on specific header
and content-based attributes that are checked in a priority order.
The highest priority attributes are the HTTP Referer and the
Location fields. The Referer field identifies the URL of the
webpage that linked the resource requested. Valid Referer fields
are used in approximately 80% of all HTTP requests [14] making
them a useful attribute in grouping. The Locat ion field is present
during a 302 server redirect to indicate where the client browser
should query next. After a time window expires, a web session
tree is built from the associated flows. Note that our approach can
analyze HTTPS traffic in cases where there is a man-in-the-middle
proxy that can decrypt SSL sessions.

We chose this tree building technique because our dataset lacked
the full packet payloads required to use more complex and exact



Query
http://www.maliciousdomain.com/12/blah/19FDE?id=ZWFzdXJILg==&c=35;5;3

Domain Name Path Parameters

Figure 2: The components of a URL for feature extraction.

approaches [23]. Even so, the tree building approach we used
has been effectively applied in other studies [14, 27, 22] and aptly
demonstrates the utility of our similarity algorithm. In Section 5.3,
we discuss how our algorithm can be utilized to scalably build trees
using more complex and time intensive techniques.

3.2 On Building the Malware Index

The malware index is built using HTTP traces from samples of
well-known exploit kits (e.g., Fiesta). These samples are gathered
by crawling malicious websites [15, 17, 18] using a honeyclient.
A honeyclient is a computer with a browser designed to detect
changes in the browser or operating system when visiting mali-
cious sites. The first step in building the index is to compile a
list of URLs of known malicious exploit kits from websites such
as threatglass.com, and urlquery.net. Next, each page must be au-
tomatically accessed using the honeyclient and the corresponding
HTTP traffic is recorded. Each trace is transformed into a tree us-
ing the process in Section 3.1, and then content-based (node-level)
and structural features are extracted and indexed.

Content-based (Node-level) Indexing: An exploit kit tree is com-
prised of N nodes, where each node represents a bidirectional HTTP
request/response flow with packet header, HTTP header, and pay-
load information available for extraction and storage in a document
style inverted index. Each bidirectional flow (or node in a tree) can
be thought of as a document, and its features as the words of the
document, which are indexed. Each node is given a unique integer
ID and three types of features are extracted: token features, URL
structural features, and content-based features.

Token features are mainly packet header and URL features. They
are gathered from the URL by breaking it down into its constituent
parts: domain names, top level domain, path, query strings, query
key/value pairs, parameters, destination IP addresses, and destina-
tion subnets. All attributes are stored as bags of tokens. For ex-
ample, the token features for the URL shown in Figure 2 would
be: www.maliciousdomain.com, com, 12, blah, 19FDE,
1d=ZWFzdXJILg==, c=35, 5, and 3.

URL structural features abstract the components of the URL by
categorizing them by their data types rather than their actual data
values (as in the token features). We use 6 common data types in
URLSs: numeric, hexadecimal, base64 encoding, alphanumeric, and
words. These datatype encodings are used in conjunction with the
lengths or ranges of lengths of corresponding tokens to generate
structural URL features. For example, the URL structural features
for the URL shown in Figure 2 12 /blah/19FDE would be bro-
ken into 3 features: path-num-2, path-word-4, path-hex-5.
Content-based features are extracted from the HTTP headers or
payloads where possible. They include binned content lengths,
content types, and redirect response codes.

Structural Indexing: Each malware tree in the index is assigned a
unique tree identifier, while each node has a unique node identifier.
The tree is stored as a string of node identifiers in a canonical form
that encodes the tree’s structure. The canonical string is built by
visiting each node in the tree in a preorder traversal, and appending
node identifiers to the end of the string. Note that each indexed
node contains the identifier for its corresponding tree to allow for
easy mapping from node to tree while each tree structure is labelled
by exploit kit type (e.g., Flashpack, Fiesta).
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3.3 On Subtree Similarity Searches

With a malware index at hand, we then monitor HTTP traffic at
the edge of an enterprise network, and convert the traffic into web
session trees. Our task is to determine whether any of the trees
contain a subtree that is similar to a sample in the index. If so, the
tree is flagged as malicious and labeled by its exploit flavor.

We approach the subtree similarity search problem using a two-
step process: node level similarity search and structural similarity
search. First, we determine whether any nodes in a web session
tree 1" are “similar” to any nodes in the malware index. If there are
multiple nodes in 7" that are similar to a tree E in the index, then we
extract the subtree S containing those nodes, and compare S struc-
turally with E' using a tree edit distance technique. Subtrees with
sufficient node overlap and structural similarity with E are flagged
as malicious. Structural similarity is used because it significantly
reduces false positives over grouping HTTP flow sequences (§ 5).

3.3.1 Node Level Similarity Search

To determine whether any nodes in 7" are sufficiently similar to
nodes in the malware index, we extract the set of token, URL struc-
ture, and content-based features from each node x in T". These node
features are then used to query the index and return any nodes ¢ that
have a feature in common with node x. Node similarity is measured
by a score based on the overlapping features between nodes.

In this work, we compare two node similarity approaches: the
Jaccard Index, and the weighted Jaccard Index to determine how
weighting affects the accuracy of the algorithm. The Jaccard In-
dex [10] is a similarity metric that measures the similarity of two

sets X = {z1,..... ,Zn}tand I = {i1,....,in } by calculating
J(X,I) = ggﬂ . This generates a score between 0 and 1, with

higher scores meaning higher similarity. More precisely, we use a
variant of the Jaccard Index, called relevance to determine how rel-
evant the set of node features of x in 7T is to the set of node features
of 7 in the index. To calculate the relevance of X to I, the Jaccard
Index becomes: J(X,I) = ‘)T?l”

Two flows z and ¢ are considered similar if J(X, I) > €, where
X and [ are feature sets of x and ¢ respectively, and € is a user
defined threshold. If a node in tree 1" is similar to a node in the
index, the node in 7" is assigned the ID from the node in the index.
The node IDs are used to compare the structural similarities of the
subtrees of 7" with the matching trees in the index (Section 3.3.2).

A weighted Jaccard Index [10] introduces weighting to the fea-
tures of the set. A higher weight value on a feature emphasizes
those features that are most distinctive to a malicious flow; thereby,
increasing the similarity score of two nodes that are malicious. The
weighted intersection of X and [ is defined as

WX, = Y w),

xzeXNI

where w is the weight of each feature x.

Then, the weighted Jaccard Index becomes:

WIX.I) = X1 _ W(X,1) 7
XUl C(X)+C)—W(X,1)

where C(X) = |X| = Y cx w(z). Again, we use a variant of

the weighted Jaccard Index to calculate the relevance of X to I:
wix.ny = X0I _ WD
] o)

We apply a probabilistic term weighting technique first intro-
duced by Robertson and Jones [32] which gives an ideal weight
to term ¢ from query (). The terms are used in a similarity-based
scoring scheme to find a subset of the most relevant documents to

query (). Here, term ¢ is a feature extracted from node z.
To calculate a feature weight w(f), we first consider a dataset
of N benign HTTP flows, and R tree instances from a particular
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Figure 3: A simplified similarity search on the index. Web session tree 1" contains nodes that are similar to nodes of one of the Nuclear trees
in the index. Those nodes in 7" are subsequently mapped to their corresponding nodes in the index to form subtrees.

exploit kit flavor (e.g., Nuclear, Fiesta, etc.). Let some feature f
index 7 of the malicious trees in R and n of the benign flows in .
As such, p = £ is the probability that feature f indexes an exploit

(n=r)

kit, while ¢ = N"R) is the probability that f indexes a benign
flow. Therefore, the weight of feature f becomes:

p(l—¢q) r(N—R—n-+r)
w(f) = log = log
D=t = m e
When r = 0, i.e. feature f does not index any of malicious

trees, the formulation is not stable; therefore, we apply the follow-
ing modification as suggested by Robertson and Jones [32]:
w(f) = lo ((T+1/2)(N—R—n+'r+1/2))
TN R 112 —rt1/2)

Our technique requires a node-level similarity threshold for each
exploit kit family stored in the malware index in order to determine
that a node in 7" is similar to nodes in the index. To compute the
thresholds, we compare the node similarities scores of each tree in
the malware index, against all the other trees in the malware index
that are in the same exploit kit family. An average node similarity
score is calculated for each node in each tree in an exploit kit fam-
ily. The node-level threshold for the kit is calculated by finding the
node in the tree with the lowest average similarity score.

This process is presented in Algorithm 1. For pedagogical rea-
sons, we use Fiesta tree samples from the malware index to illus-
trate the approach. For each tree ¢ in the set of Fiesta trees, we first
find all trees s that have a tree edit distance similarity score above
zero (lines 3-5). For any node in ¢ that has a similarity score above
0.1 with s, its score is recorded (lines 7-9). Finally, we store the
minimum average score as the threshold for the kit. During the fea-
ture extraction stage, token and content-based features are ignored
in order to provide a conservative lower bound on the threshold.

3.3.2  Structural Similarity Search

After a node level similarity search between a tree 7" (built from
the network) and the trees in the malware index, there will be 0 or
more nodes in 7" that are considered “similar” to nodes in the mal-
ware index. A node in tree 7' may be similar to multiple nodes in a
single tree in the index or even in multiple trees. The next step is to
extract the subtrees S within 7" that map to the corresponding trees
in the index. Figure 3 shows a simplified example of a structural
similarity search. Node B in tree 7" maps to node 02 based on node
similarity for a Nuclear tree in the index. Similarly, node C in T’
maps to node 03. These node mappings are used to build subtrees
of T' that are compared to the corresponding trees in the index.

Subtrees from tree 7" are compared to the trees in the index using
tree edit distance [11]. Tree edit distance uses the number of dele-
tions, insertions, and label renamings to transform one tree into an-
other. We enforce ancestor-descendant relationships in our setup.
For example, if a node was an ancestor of another node in a tree in
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Algorithm 1 Finding the node level similarity threshold for the
Fiesta exploit kit using the set of all Fiesta tree samples in the index

1: Ty < set of all Fiesta Trees in Index
2: minval = 1.0
3: forall (dot < T%)

4: for all (do s < T¥%)

5: if TreeSimScore(s,t) > 0.0 then

6: for all (do ns + Node(s);nt < Node(t))
7: if score - NodeSimScore(ns,nt) > 0.1 then
8: ny.totalScore+ = score

9: n¢.numberScores+ = 1

10: end if

11: end for

12: end if

13: end for

14: for all (do n; < Node(t))

15: avg = ny.totalScore/nt.numberScores

16: if avg < minval then

17: minval < avg

18: end if

19: end for

20: end for

21: threshold = minval

the index, the relationship must be maintained in the subtree S. As
shown later, this restriction helps to reduce false detections. The
result of the tree edit distance calculation is a structural similarity
score between 0 and 1 that is then used to classify the subtree as
either being benign or similar to a specific exploit kit.

4. DATASET AND TRAINING

The efficacy of our approach is evaluated using logs collected
from a commercial HTTP proxy server (called BlueCoat) that mon-
itors all web traffic for a large enterprise network. The proxy server
records all client-based bidirectional HTTP/HTTPS flows from eight
sensors at edge routers around the network and acts as a man-in-
the-middle for HTTPS sessions providing a view into encrypted
traffic. Each sensor saves flow records into its own set of hourly
log files. Flows contain both TCP and HTTP headers.

For our first set of experiments, we analyzed 628 hours worth
of labeled log data spanning different days during November 2013
and July 2014. The log files were chosen because they contained
known instances of Nuclear, Fiesta, Fake, FlashPack, and Magni-
tude exploit kits along with several instances of a clickjacking [13]
scheme that we refer to as ClickJack. Statistics for the dataset are
summarized in Table 1 (labeled Dataset 1). We also utilized a sep-
arate three-week long dataset from January 2014 which was unla-
beled to show the operational impact of our technique. Statistics
for the dataset are also described in Table 1 (labeled Dataset 2) and
are discussed in Section 6.



Table 1: Summary of datasets.

Dataset 1 | Dataset 2
Network sensors 8 8
Hours analyzed 628 3264
Client IP addresses 345K > 300K
Bidirectional flows processed 800M 4B
HTTP tree structures processed 116M 572M

4.1 Implementation

The implementation is a multi-threaded application written in
approximately 10,000 lines of Python and C++ code. It processes
archived bidirectional HTTP flows that are read and converted into
web session trees on the fly while node and tree features are stored
in the Xapian search engine. The prototype uses separate threads
to read and parse each flow, to build HTTP web session trees, and
to compare the most recently built tree to the malware index.
System Environment: All experiments were conducted on a multi-
core Intel Xeon 2.27 GHz CPU with 500 GBs of memory and a 1
TB local disk. Notice that the platform is chosen because it facili-
tates our large-scale experiments by enabling multiple instances of
the prototype to be run in parallel. The actual memory allocated for
each prototype instance is 20G.

4.2 Building the Malware Index

As mentioned in Section 3.2, the malware index is essentially
the “training data” used to detect malicious subtrees in the dataset.
As such, the index is populated with exploit kit samples from a
completely disjoint data source. We populated the malware index
with exploit kit samples downloaded from a malware analysis web-
site [7]. The operator collected HTTP traces of exploit kits using a
honeyclient and stored them in a pcap format. We built a tool that
transforms these traces into HTTP trees that are in turn indexed.
The 3rd column of Table 2 provides a count of how many instances
of each kit were downloaded and indexed. Note that none of the
instances installed in the index appear in the proxy data logs. The
clickjacking sample was downloaded from another website [25].

Table 2: Testing and training sets. Exploit kits collected from
www.malware-traffic-analysis.net used to build the malware index.

Instances in Instances in
Exploit Kit Dataset 1 | Malware Index
Fiesta 29 26
Nuclear 7 10
Magnitude 47 12
ClickJack 130 1
FlashPack 2 7
Fake 575 12

The second aspect of building the malware index is to calcu-
late feature weights for all node features in the index when using
the weighted Jaccard Index for node similarity. This requires mali-
cious samples from the malware index as well as samples of normal
traffic in order to determine how prevalent a feature is in both the
malicious and benign dataset. In our experiment, we used 10 days
worth of benign data from a single sensor in the BlueCoat logs to
calculate feature weights. The benign data included over 4.4 mil-
lion bidirectional flows.

Finally, we calculate the node similarity thresholds for each ex-
ploit using Algorithm 1 (§3.3.1). The thresholds for the weighted
and non-weighted node similarity scores ranged between 0.2 to
0.25 depending on the exploit kit as shown in Table 3.

4.3 Establishing Ground Truth

In order to establish a ground truth as a test set for our experi-
ments, we compiled a list of regular expressions from various sources
in order to identify exploit kit instances in Dataset 1. First, we

Table 3: Node-level thresholds computed by Algorithm 1.

Exploit Kit | Threshold (Weighted JI) | Threshold (JI)
Fiesta 0.25 0.25
Nuclear 0.23 0.25
Magnitude 0.25 0.25
ClickJack 0.25 0.25
FlashPack 0.23 0.2
Fake 0.23 0.25

ran the Snort Sourcefire exploit kit regular expression rules from
the Vulnerability Report Team [37] over the entire dataset. The
ruleset included signatures for detecting exploit kits, such as Nu-
clear, Styx, Redkit, Blackhole, Magnitude, FlashPack, and Fiesta.
We augmented these signatures with regular expressions gathered
from a malware signatures website (www.malwaresigs.com) that
included regular expressions for Fiesta, Angler, FlashPack, Styx,
and Redkit. Through manual inspection of flows in Dataset 1 that
match these signatures/regexes, we were able to identify several
instances of the Fiesta, Nuclear, ClickJack, FlashPack, Fake, and
Magnitude exploit kits (see the middle column of Table 2). False
positives were painstakingly removed by grouping URLSs by do-
main names, and by comparing them against publicly available
blacklists and whitelists, including online searches against vari-
ous API’s engines (e.g., VirusTotal, GoogleSafe Browsing, URL-
Query.net, Alexa, malwaredomainlist.com, and Google).

Unfortunately, our analysis was conducted shortly after the au-
thor of the Blackhole and Cool exploit kits was arrested in Rus-
sia [36]. Hence, these exploit kits, which were once credited with
over 90% of new infections [36], collapsed leaving attackers scram-
bling to find an alternative. Although, we were unable to obtain
traces of the Blackhole or Cool exploit kits, we procured many in-
stances of the Fiesta and Magnitude kits, which became prevalent
after Blackhole’s demise [30]. Recent studies [30, 9] show that
there are approximately 6-8 exploit kit types dominating the Inter-
net at any one time, accounting for the relatively small number of
different but popular kits found on the analyzed network.

S. FINDING THE NEEDLE IN A HAYSTACK

In this section, we evaluate and compare our approach on Dataset
1 against the Snort Intrusion Detection System as well as two recent
machine-learning approaches to detect exploit kit instances.

5.1 Comparison with Snort

In all cases, but FlashPack, the weighted and non-weighted node
similarity approaches yielded the same results; therefore we leave
indepth discussion of these approaches for Section 5.3.

B Fiesta: In evaluating Fiesta, we compared our approach against
the Snort rule 29443, which detects Fiesta outbound connections
attempts. The rule focuses on the single flow related to the exploit
payload and detects Fiesta instance by searching a particular alpha
numeric pattern in the URL. As a result, it also flags 597 benign
flows that match the regex pattern. On the contrary, our technique
focuses on the structural path of flows taken to arrive at the ex-
ploit payload. As such, in our technique, not only are we able to
eliminate these accidental matches that are unlikely to share sim-
ilar structures with Fiesta instances, but also identify the exploit
before the payload is reached, and even cases where no payload
was downloaded at all. The results are summarized in Table 4.
Table 4 shows that using structure eliminated all 597 false posi-
tives flagged by the Snort rule and also identified cases that Snort
missed. In most cases, our approach detected a Fiesta instance in as
little as two or three nodes. Furthermore, it detected three instances
that were not originally flagged in the ground truth, because our
approach was able to detect the path of requests to the payload. In



six cases, the exploit kit never reached a payload, and in another
two, the payload string did not match Snort’s regex. We missed
two instances of Fiesta that accessed the same landing page but at
different times. These instances were missed because there were
no structures in the index similar enough to the instance to attain a
structural score. There was no overlap between the false negatives
missed by both techniques.

B Nuclear: To track Nuclear, we used three Snort rules 28594,
28595, and 28596, which search for numeric jar and tpl file
name of malicious payloads as well as specific directory structures
in URLs. As noted in Table 4, the Snort signatures performed rea-
sonably well for detecting all five Nuclear instances; because in all
these cases, Nuclear was able to proceed to the payload-download
stage. However, by looking for specific file types, these regexes
missed an instance of Nuclear that was downloading a malicious
pdf (which we detected). Furthermore, the generality of the sig-
natures (e.g., matching numeric jar or tpl names) leads to 24 false
alarms on legitimate websites that download benign jar files with
numeric names. Our approach, on the other hand, strikes a better
balance between specificity and generality. By leveraging struc-
tural properties of multi-stage exploit kits, it eliminates all false
positive cases (which do not share similar tree structures with Nu-
clear exploit kits) and is able to generalize to new variation of ex-
ploit kits with previously unseen payloads. Although our approach
failed to detect two instances of Nuclear that were structurally the
same, that failure arose because our index did not have a similar
example in the datastore.

The most interesting instance of Nuclear found in the data was
downloaded through an advertisement on a popular foreign news
site. That exploit successfully downloaded both a Java exploit
and a malicious binary to the unsuspecting client machine.

B Magnitude: In order to evaluate Magnitude, we utilized Snort
rules 29188 and 28108, which search for hex encoded eot and
swt files, respectively. Results for all techniques are shown in Ta-
ble 4. The Snort rules generated over 60,000 false positives and
missed an instance that did not download a payload while the clas-
sifier detected all exploit kit instances but with a high FP rate. By
contrast, using the structure of correlated flows, we had zero false
positives and zero false negatives.

B FlashPack: Our empirical analysis shows that FlashPack is one
of the more difficult exploit kits to detect because of its use of
common php file names such as index.php, flash.php, and
allow.php. Snort uses rule 29163 to identify a subset of these
files (i.e., those which have a specific query string to reduce false
positives). However, the query string can be easily manipulated
by attackers to evade detection and it often varies across differ-
ent FlashPack variations. As a result, the Snort rule was unable to
detect the two instances of FlashPack variations in the data. We
experimented with a much looser regular expression to identify all
instances; however, it generated over 43,000 false positives.

Using our approach, we were able to identify both instances in
the dataset, with only 68 false positives (weighted node similarity)
and 109 false positives (non-weighted) — four orders of magni-
tude reduction over the loose regular expression. The added false
positives in the non-weighted case are due to the increased num-
ber of node-level false matches in the non-weighted Jaccard Index
calculation. FlashPack was the only exploit kit analyzed where set-
ting a minimum structural threshold had a significant impact on
the false positive rate (We return to that later in §5.3). The two true
instances had similarity scores of 0.75 and 0.85 respectively. With
a conservative structural similarity score of 0.5, the number of FPs
is reduced to three (weighted) and 19 (non-weighted) (Table 4).
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Forensic analysis revealed that both instances of FlashPack were
loaded through banner ads when two separate clients visited enter-
tainment websites. In one of these cases, the exploit successfully
downloaded both a malicious Flash file as well as a Java archive
to the vulnerable client.

B ClickJack: Clickjacking is a technique in which an attacker tries
to fool a web user into clicking on a malicious link by injecting
code or script into a button on a webpage [13]. To detect instances
of the ClickJack kit, we loaded a single instance of its structure
into the index and then performed searches on the entire dataset.
There was no equivalent Snort rule for finding such an exploit and
S0 a comparison to Snort was not possible. Our approach identified
130 instances of the clickjacking scheme with zero false positives
and zero false negatives. Interestingly, our analysis found that the
ClickJack subtree was the initial entry point into various exploits
including an instance of the Magnitude exploit kit, and several tro-
jans. With an online version of our approach, we would have been
able to detect the exploit before it was downloaded.

B Fake - Installer: Our final case study focuses on the Fake In-
staller exploit kit, which is an exploit that attempts to install a fake
Adobe update for an unsuspecting client. This kit is identifiable by
the checker . php file it uses to check the system and attempt a
download of a malicious payload. This common file name can trig-
ger an excessive number of false positives, so because of this, there
was no corresponding Snort rule. We conducted our own analy-
sis on our dataset specifically looking for the checker.php file and
found 1,200 cases of this file in a three month period. Of those
1,200 cases, we were able to confirm 575 to be the Fake Installer.
Utilizing our approach, we successfully identify all such cases with
zero false positives and zero false negatives.

Summary: Table 4 summarizes the detection results of our ap-
proach and Snort. Regarding exploit kits for which Snort rules
are available (i.e., Fiesta, Nuclear, Magnitude, and FlashPack), our
structure similarity-based approach achieved a 95% detection ac-
curacy while outperforming Snort (at 84%). Considering that false
positives place undue burden on analysts to perform a deeper in-
vestigation on each reported incident, reducing false positives by
over three orders of magnitude is a non-trivial improvement. In ad-
dition, our approach identified all instances of two exploit kits for
which Snort rules were not available (i.e., Clickjacking and Fake).
The approach reduces false positives by utilizing both content and
structure, effectively creating a larger feature space.

Table 4: Comparison (weighted) to Snort signatures.

e Structural Sim Snort
Exploitkits | # TPs | FPs | FNs P FPs | FNs
Fiesta 29 25 0 4 19 597 10
Nuclear 7 5 0 2 5 24 2
Magnitude 47 47 0 0 46 | 60000+ 1
FlashPack 2 2 3 0 0 9 2
79 70
Total 85 95%) 3 4 (84%) 60630+ 13
ClickJack 130 130 0 0 - - -
Fake 575 575 0 0 - - -
705
Total 705 (100%) 0 0 - - -

5.2 Comparison with State of the Art

Next we compare our approach with a statistical classifier pro-
posed by Ma et al. [21]. The classifier is based on Logistic Re-
gression with Stochastic Gradient Descent using features similar to
those described in Section 3.2. The classifier labels URLs as ei-
ther malicious or benign and is trained with all 1,000 URLs used
to build the malware index, as well as 10,000 benign URLs col-



lected from BlueCoat logs with a 10z class weight applied to the
“malicious” class. Parameters for the algorithm are tuned using a
grid search and five fold cross validation on the would be training
set. Results are shown in Table 5 indicating that the classifier per-
formed well at detecting exploit kit instances. The classifier was
able to detect two more instances of Fiesta than our approach be-
cause both clients visited a landing page for an exploit kit, but did
not reach a payload, exposing no web structure for our technique to
detect. In the case of Nuclear, the classifier was unable to identify
the instances that only used . tpl and . pdf file types.

Unfortunately, the technique flagged over 500,000 URLs as ma-
licious in Dataset 1. Through a painstaking analysis of the URLs
using malware reports, blacklists, and google searches, we were
able to confirm 4,000 of the URLs to be malicious — 2,500 of the
URLSs were associated with the exploits kits found as ground truth
in Dataset 1 (Table 2), which were also detected by our approach.
Note that Table 2 represents numbers of trees, with each tree con-
taining multiple URLs. The other 1,500 URLS were comprised
of web requests to algorithmically generated domain names used
by botnets [41], phishing sites, and malware download sites and
were unrelated to exploit kit traffic. False positives were attributed
to many different websites including content distribution networks,
URL shorteners, and advertising networks. Clearly, due to the high
false positive rate, the approach of Ma et al. [21] is infeasible in an
operational environment.

Table 5: Comparison (weighted) to binary URL classifier.

I Ins- Structural Sim Classifier

Exploitkits | ces |[TPs [ FPs | FNs TPs FPs | FNs
Fiesta 29 25 0 4 27 - 2
Nuclear 7 5 0 2 5 - 2
Magnitude 47 47 0 0 47 - 0
FlashPack 2 2 3 0 2 - 0
ClickJack 130 130 0 0 130 - 0
Fake 575 575 0 0 575 - 0

784 786 | 500,000+
Total 790 I 9905) 3 6 || 0o | (URLs) 4

Recently, Stringhini et al. [35], Mekky et al. [22], Cova et al. [5],
Eshete and Venkatakrishnan [8] proposed detecting malicious web-
sites by counting the number of HTTP redirects (i.e., 302, javascript,
or HTML) to hop from a compromised website to the malicious
exploit. The key insight is that attackers utilize statistically more
intermediate HTTP redirects than benign traffic in order to avoid
detection. Our intention was to provide a comparative analysis to
Stringhini et al. [35], but unfortunately, the approach of Stringh-
ini et al. [35] requires modeling a diverse set of redirect chains of
users visiting the same malicious websites with different environ-
ments (e.g. OSes and browsers) at geographically dispersed loca-
tions. Given that such widely heterogenous environments are not
available in most enterprises, we evaluate the utility of using redi-
rects as a main feature to detect exploit kits in traffic by exploring
the full packet payload HTTP traces associated with 110 exploit
kit instances. The instances included 14 distinct exploit kits: An-
gler, Blackhole, Dotka Chef, Fake, Fiesta, Flashpack, Goon, Hello,
Magnitude, Neutrino, Nuclear, Styx, Sweet Orange, and Zuponic.

Redirection chains were built from each trace by extracting server
and HTML (meta tag) redirects. Additionally, we manually ana-
lyzed a subset of 50 traces using an instrumented HTML parser,
javascript engine(Rhino) and DOM (envjs) in order to build chains
that included javascript redirections. We found that the traces had
relatively short redirection chains, and the length the chain was dic-
tated by the type of exploit kit. Exploit kits such as Blackhole,
Nuclear, Fiesta, Goon DotkaChef, Fake, and Sweet Orange con-
sistently had a single indirection to the exploit kit server. Indeed,

262

server and meta redirections were rare with the main form of redi-
rection being an i frame injection into the compromised site, or
a javascript injection that built an i frame. Magnitude, An-
gler, Flashpack, Zuponic and Neutrino saw anywhere from 1 to 3
redirects with a combination of server, meta and javascript redi-
rects. In fact, Styx was the only instance that had more than 4
redirects. These results are in stark contrast to the results of Mekky
et al. [22] that show that over 80% of all malicious chains have 4
or more server redirects or that the average number of exploit kit
server redirects are five [8].

Not only are we not seeing large redirect chains for exploit Kits,
but we are also seeing comparable length redirect chains in benign
traffic due primarily to advertising networks. We built server and
meta redirection chains on 24 hours worth of data from a large en-
terprise network consisting of 12 million bidirectional HTTP flows.
In that time period, 400,000 redirection chains were generated in-
cluding 35,000 chains of length 2 to 5, making the redirection fea-
ture prone to false positives. By contrast, our approach can utilize
redirection chains, but focuses on the process by which an exploit
kit attempts to compromise a host and models that into a tree-like
structure in order to reduce false positives.

5.3 Findings and Discussion

We now take a closer look at why the use of structural infor-
mation (especially, the ancestor-descendant relationship) is impor-
tant in reducing false positives. We begin our analysis by focusing
on the node-level similarity scores using the weighted and non-
weighted Jaccard Index calculated between the HTTP flows in the
archival logs (i.e., Dataset 1 in Table 2) and those in the malware
index. The results are shown as a cumulative distribution function
in Figure 4. Notice that over 98% of the flows in the dataset had a
similarity score below the conservative lower bound thresholds (of
0.23/0.2) derived from Algorithm 1 while all nodes associated with
malicious trees had a node similarity score of 0.22 or higher.
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Figure 4: The CDF of node similarity scores between our test
dataset and the malware index. “All” represents similarity scores
between all nodes in the dataset and the malware index, while “Ma-
licious” represents the node scores for trees in the dataset that were
flagged as malicious(W = weighted).

The similarity scores for both node similarity metrics followed
the same distribution; however, the non-weighted Jaccard Index
generated on average lower similarity scores than the weighted ap-
proach (weighted mean = (.10, non-weighted = 0.09) with similar
standard deviations. As can be seen from Figure 4, the similar-
ity gap between the malicious and benign nodes is smaller in the
non-weighted case than in the weighted case. This leads to more



node-level false positives, and, as a result, structural false positives
as seen in the case of FlashPack. Intuitively, because the weighted
Jaccard Index is weighted according to the importance of the fea-
ture, an unweighted version will be more likely to have false pos-
itives due to common features that are prevalent both in benign
and malicious nodes. Even though the weighted version provides
marginally better accuracy, the non-weighted Jaccard Index may be
more desirable from an operational perspective because it does not
require any feature training.

As shown in Table 6, there were a large number of false posi-
tives if we considered only node-level similarity (like Snort signa-
tures that focus only on individual flows) for both weighted and
non-weighted similarities. The false positive rate started to de-
crease when considering multiple nodes in a tree (without consid-
ering structure), as the probability of a benign website having two
or more nodes in the same tree that match malicious patterns was
an order of magnitude smaller. The false positive rate decreased
further by another order of magnitude once a structural score was
established using tree edit distance. After imposing the ancestor-
descendent requirement on the tree structure, the false positives
were reduced to 68 for the total of over 800 million flows. The
results show that tree structure is the primary determining factor in
reducing false positives.

Table 6: FPs for single node matching, multi-node matching with-
out considering structure, structural similarity, and structural simi-
larity with ancestor-descendant requirement.

Threshold Threshold Tight

(Alg1) (Alg 1) Threshold

non-weighted weighted weighted
Single Node 2,141,493 360,150 141,130
Multi-node (no structure) 79,321 32,130 5,878
Structural 5,967 3,800 420
Structural (w/ restriction) 109 68 68

As shown in Table 6 there is a several orders of magnitude reduc-
tion in the number of nodes (flows) that are similar to nodes in the
index, w.r.t the total number of nodes (flows) in a given dataset (Ta-
ble 1). We can leverage this result, by only building trees for flow
clusters that have multiple similar nodes in common with a tree in
the malware index, thus enabling us to scalably apply much more
computationally expensive (and correct) tree building techniques
to the wire (i.e., [23]) when full payloads are available. Table 6
also shows the detection rates under the optimal tight node-level
similarity thresholds using weighted similarity. This bound is the
maximum node similarity threshold allowed to still detect all true
positives, and was calculated using the ground truth dataset. Even
with the optimal bound, structural information was still needed to
reduce the false positives.

Our empirical analysis also showed that in the majority of cases,
a relatively low minimum structural threshold (less than 0.05) for
the tree-similarity score was sufficient because the flagged tree was
indeed malicious in almost every case. The structural similarity
threshold is specific to the similarity metric chosen and was set con-
servatively low to maximize true positives with few false positives,
creating a clear separation between benign and malicious cases.
Figure 5 shows the cumulative distribution of the tree edit distance
scores for the malicious subtrees analyzed. The scores ranged any-
where from 0.2 to a perfect 1.0 due to a few factors. First, in some
cases there may be multiple nodes added or missing from the sub-
tree as compared to the malware index, causing an imperfect score.
The second reason was that, especially in the case of ClickJack, the
exploit may lead into other exploits or websites causing the subtree
in the dataset to look different from any of the ones in the malware
index. Taken together, these findings underscore the power of using
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structural information and subtree mining, particularly when there
may be subtrees that are incomplete or contain previously unseen
nodes compared to those encoded in the index. The combination
allows us to attain maximum flexibility and reduce both false neg-
atives and false positives over contemporary approaches.
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Figure 5: The CDF of tree similarity scores for malicious subtrees.

6. OPERATIONAL DEPLOYMENT

To further demonstrate the utility of our approach in a large
enterprise environment, we analyzed three consecutive weeks of
BlueCoat logs from January 6-31, 2014 (Dataset 2 in Table 1) us-
ing the weighted version of our approach. During the time period,
over 4 billion bidirectional flows and 572 million HTTP trees were
generated and analyzed using a malware index consisting of the
Fiesta, Nuclear, Fake, ClickJack, and Magnitude exploit kits.

During the deployment we were able to identify 28 exploit kit
instances with no false positives, compared with Snort signatures
that generated over 22K false positives and missed most of the Fi-
esta instances, as shown in Table 7. Two of the Fiesta instances
downloaded malicious Java files, while two others downloaded
spyware. The Nuclear instance successfully downloaded a mali-
cious PDF file followed by a malicious binary. We also discovered
that two of the Clickjacking instances downloaded Popup Trojans.
By contrast, the URL classifier of Ma et al. [21] generated an aver-
age of 143,000 alerts per day for a total of 3.6 million alerts in the
month. Unfortunately, the sheer volume of alerts made it infeasible
to vet each flagged URL.

08 09 1.0

Table 7: Live comparison to Snort signatures.
e Structural Similarity Snort

Exploitkits | ppg FPs || TPs FPs | FNs
Fiesta 20 0 2 340 | > 18
Nuclear 1 0 1 0 -
Magnitude 1 0 1 22,224 -
Clickjacking 6 0 || VA N/A -
Fake 0 0 || N/A N/A -

The fact that we were able to successfully detect these abuses on
a large enterprise network underscores the operational utility of our
technique. Indeed, one of the main motivating factors for pursuing
this line of research and subsequently building our prototype was
the fact that the high false positives induced by existing approaches
made them impractical to network operators at our enterprise —
who inevitably disabled the corresponding signatures or ignored
the flood of false alerts altogether.

From an operational perspective, speed is as equally important
as accuracy in order to keep up with the live traffic in a large enter-
prise network. Therefore, to assess our runtime performance, we
evaluated the processing speed for the various components when
processing one days worth of traffic across all eight sensors. Note



that eight prototype instances were run — one for each sensor. The
experiment shows that a single instance of our current prototype is
able to process an entire day of traffic in 8 hours. Figure 6 illus-
trates the performance breakdown of different components of our
prototype, indicating that on average, the prototype can parse 3.5K
flows per second (302M flows per day), build trees at a rate of ap-
proximately 350 per second and conduct the similarity search at a
rate of 170 trees per second. Profiling the similarity search mod-
ule showed that over half the runtime was spent performing feature
extraction and memory allocation, while only 5% of the time was
spent searching the index. Sensors 5, 6, and 8 were slower than the
other sensors because they received a larger portion of the traffic.

Lastly, we note that although our prototype was able to keep up
with the average volume of traffic in the target enterprise, the same
was not true at peak load. Statistics collected from one day of traffic
across all eight sensors showed that at its peak, the network gener-
ated 6,250 flows and 550 trees per second. While our prototype
falls short of processing at that speed, we note that by design, all
the components (e.g., flow parsing, tree building and feature extrac-
tion) are parallelizable; as such, with modest hardware provisions
we believe our prototype could efficiently handle the peak loads
and operate in real-time. We leave this for future work.
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Figure 6: The performance of bidirectional flow parsing, tree build-
ing, and malware searching for one day of data across 8 sensors.

7. LIMITATIONS

As with any security solution, attackers will inevitably seek ways
to bypass it. An obvious evasive strategy would be to hinder our
ability to build subtrees from HTTP flows by using JavaScript and
other obfuscation techniques that hide the relationship (e.g., redi-
rection, reference) between HTTP flows. As mentioned previously,
we believe our two step similarity algorithm allows us to signifi-
cantly reduce the overall number of trees that need to built, allowing
more computationally expensive and correct techniques to be used
such as dynamic analysis [23], JavaScript de-obfuscation [19, 40],
and statistical means [12, 24, 44] — all of which could be easily
adopted in our setting to thwart evasive techniques. Moreover, in
many enterprise environments, there is strict control over the soft-
ware configuration of client devices in the network, and as such, a
mandatory browser plugin could be enforced to make building web
session trees easier than our current approach. Nevertheless, we re-
iterate that the focus of this work is not to build better HTTP trees,
but to demonstrate the benefits of a tree structure-based detection
approach in reducing false negatives and false positives.

In addition, because our approach relies on node-level and stru-
cture-level similarity to detect exploit kits, a skilled adversary might
attempt to circumvent similarity matching by obfuscating flow fea-
tures and dramatically modifying tree structures. Although the ap-
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proach suggested herein is no silver bullet, we believe it raises the
bar for attackers and makes evasion more difficult. For instance,
by using an edit-distance based subtree mining algorithm to com-
pare observed session trees, our approach offers resilience to com-
mon obfuscation and variation techniques (e.g., adding redirection
nodes or changing malicious payloads). More importantly, a struc-
tural similarity based approach provides security analysts with flex-
ibilities in tuning the thresholds such that changes to a few nodes
in the web session trees are unlikely to significantly influence the
matching results. On the other hand, generating functionally equiv-
alent but structurally distinct exploit paths would be a non-trivial
task for attackers. As future work, we plan to quantify our re-
silience against such obfuscation strategies.

From an operational perspective, the fact that our approach in-
volves some manual effort on the part of the analyst (e.g., to find
and install representative examples of exploits kits into the mal-
ware index) might appear as a limitation. Indeed, like most tasks
in network security, performing this particular step requires some
expertise and domain knowledge. That said, the burden on the op-
erator could be lessened with automated techniques for building
these indices, for example, from data made available through web-
sites like threatglass.com. Furthermore, techniques applied in au-
tomated signature generation [42] may be useful.

Finally, like all network-based detection techniques that require
packet inspection, the approach herein cannot operate on encrypted
traffic. For many enterprises, however, the ability to inspect en-
crypted traffic is enforced at the border by using proxy servers
specifically designed to decrypt and monitor encrypted traffic. This
was precisely the case for the enterprise evaluated in this paper.

8. CONCLUSION

In this paper, we present a network-centric approach that uses
structural similarity to accurately and scalably detect web-based
exploit kits in enterprise network environments. By exploiting both
the content and the structural interactions among HTTP flows, our
approach allows us to not only reason about the likelihood of a se-
quence of HTTP flows being malicious, but to also pinpoint the
exact subset of flows relevant to malvertising. By modelling HTTP
traffic as trees, we can also determine from which root sites, or
advertising networks, an exploit kit was launched. Our prototype
implementation, which was evaluated on real world data collected
from a large-scale enterprise network, worked remarkably well. In
particular, our empirical results show significant improvement over
the state-of-the-art methods in terms of false positive and false neg-
ative rates across a variety of exploit kits. Lastly, a preliminary
analysis in an operational deployment demonstrates that our tech-
niques can easily scale to handle massive HTTP traffic volumes
with only modest hardware requirements.
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