
Watching the Watchers: Automatically Inferring TV
Content From Outdoor Light Effusions

Yi Xu, Jan-Michael Frahm and Fabian Monrose
Department of Computer Science, University of North Carolina at Chapel Hill

Chapel Hill, North Carolina, USA
{yix,jmf,fabian}@cs.unc.edu

ABSTRACT
The flickering lights of content playing on TV screens in our living
rooms are an all too familiar sight at night — and one that many
of us have paid little attention to with regards to the amount of in-
formation these diffusions may leak to an inquisitive outsider. In
this paper, we introduce an attack that exploits the emanations of
changes in light (e.g., as seen through the windows and recorded
over 70 meters away) to reveal the programs we watch. Our empir-
ical results show that the attack is surprisingly robust to a variety of
noise signals that occur in real-world situations, and moreover, can
successfully identify the content being watched among a reference
library of tens of thousands of videos within several seconds. The
robustness and efficiency of the attack can be attributed to the use
of novel feature sets and an elegant online algorithm for performing
index-based matches.
Categories and Subject Descriptors: K.4.1 [Computers and So-
ciety]: Privacy
General Terms: Human Factors, Security
Keywords: Visual eavesdropping; Compromising emanation

1. INTRODUCTION
To most of us, it would come as no surprise that much of our pop-

ulation is addicted to watching television, due in part to the wide
variety of entertainment (e.g., reality TV, game shows, movies,
premium channels, political commentary, 24hr news, etc.) that is
offered in today’s competitive market place — be that online or
via broadcast TV. Indeed, so-called catch-up TV and Internet con-
nectivity now liberate viewers from restrictive schedules, making
watching shows part of a wider and richer experience in homes.
Admittedly, although familiar TV sets of the old days are not as
popular as they once were, TV is here to stay and its role in deliv-
ering compelling viewing experiences will continue for decades.

The markedly richer content offered today has helped sustain liv-
ing room screens as a dominant communication medium — both
collectively (e.g., for watching a big game or season finale) and in-
dividually (e.g., for accessing specific content on demand). In fact,
even though consumer viewing habits have undergone change in
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recent years (e.g., phone, tablet and computer viewing habits have
steadily increased), nearly every U.S. home still owns at least one
TV and 67% of Americans regularly watch television while hav-
ing dinner [6]. The flickering lights of the scenes that play out on
these TVs are easy to see when one walks through the street at
nights. Yet, many of us may not have given a second thought to the
amount of information these flickering patterns (caused by changes
in brightness) might reveal about the programs we watch.

Our findings, however, suggest that these compromising emis-
sions of changes of brightness provide ample opportunity to con-
firm what specific content is being watched on a remote TV screen,
even from great distances outside the home. The key intuition be-
hind why this threat to privacy is possible lies in the fact that much
of the content we watch induces flickering patterns that uniquely
identify a particular broadcast once a suitable amount of light emis-
sions (i.e., on the order of a few minutes) has been recorded by
the adversary. This surprisingly effective attack has significant pri-
vacy implications given that the video and TV programs that people
watch can reveal a lot of information about them, including their re-
ligious beliefs, political view points or other private interests. For
that reason, subscribers’ viewing habits are considered sensitive un-
der the U.S. Video Protection Privacy Act of 1998, which states
that an individual’s video viewing records must be kept confiden-
tial. Recently, a popular electronics firm came under investigation
when it was revealed that its Smart TV was surreptitiously sending
information on viewing habits back to the parent company in an
effort to “deliver more relevant advertisements” 1.

While the observations we leverage in this paper have been part
of folklore, to the best of our knowledge, we present the first auto-
mated, end-to-end, approach for realizing the attack. Undoubtedly,
the academic community has long acknowledged that video view-
ing records are vulnerable to different attacks (e.g., due to electro-
magnetic or power line behavior [4, 7, 9]), but these attacks have
not received widespread attention because they require access to
smart power meters and other specialized equipment in order to
capture the required signal. Moreover, because these attacks rely
on specific TV/computer screen electronic properties they remain
difficult to pull off in practice.

In this paper, we push the boundaries of these attacks by ex-
ploiting compromising emissions which are far easier to capture in
practice. In fact, we do not rely on the adversary’s ability to cap-
ture an image of the screen, or its reflection on a nearby surface
(e.g., [1, 17]). Instead, our attack works by analyzing the changes
in brightness in a room where the content is being watched, and
matching the captured signal in real-time with reference signals

1See J. Brookman, Eroding Trust: How New Smart TV
Lacks Privacy by Design and Transparency at http://www.
privacyassociation.org/, Nov. 2013.
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stored in a large database. The attack can be successfully carried
out with inexpensive consumer devices (e.g., web cameras, digital
SLRs) and works as long as illumination changes caused by the TV
screen are perceptible to the camera’s sensor.

To ensure that the attack is resilient to noise (e.g., from a pass-
ing vehicle, the turning on/off of a light switch, or from human
movement), our approach focuses squarely on significant changes
in the captured sequence, instead of directly leveraging all of the
captured signal. Said another way, we exploit temporal brightness
information that is not adversely affected by device-specific or en-
vironmental conditions. These environmental conditions (e.g., re-
flections off a wall) might result in a weakened and distorted overal
signal, but the temporal information of significant intensity changes
will remain largely intact.

A key contribution in this paper lies in the techniques we use
to take advantage of temporal information to find matches among
reference and captures signals, even in the face of significant noise
and signal distortions. To do so, we extend traditional correlation
measures to utilize temporal information when computing similar-
ity scores between sequences. The resulting strategy significantly
outperforms traditional correlation measures (e.g., [7]), for which
we present an on-line approximation method. Our empirical anal-
ysis covering 54,000 videos shows that we can perform this confir-
mation attack with surprising speed and accuracy.

2. RELATED WORK
Techniques for undermining user’s privacy via TV program re-

trieval has long been studied. The most germane of these works is
that of Enev et al. [4] and Greveler et al. [7] wherein power usage
and power line electromagnetic interference were investigated as
side-channels. Unlike the approach we take, these works encode
the TV signal in ways that largely depend on the model of the TV
and the structure of the power system. Therefore, to successfully
carry out the attack, an adversary must not only have specialized
equipment and access to smart meters, but must also have a priori
knowledge of the victim’s TV model — all of which weaken the
practicality of the attack. Moreover, other electronic devices (e.g.,
computers) within the vicinity of the TV can interfere with the cap-
tured signal, compounding the decoding challenges even further.

Other side-channels include the use of so-called compromising
reflections, which was first introduced by Backes et al. [1]. Shiny
object reflections (e.g., from a nearby teapot or off an eyeball) were
used to recover static information displayed on the target screen.
More recently, compromising reflections were also exploited by
Raguram et al. [13] and Xu et al. [17] to reconstruct information
being typed on virtual keyboards. In a similar manner, Torralba and
Freeman [14] make use of reflections to reveal “accidental” scenes
from within a still image or video sequence. The advantage for
these approaches comes from the uniformity and easy-access of vi-
sual signals; while TV screen and computer screens come with dif-
ferent model using different technologies — resulting in extremely
different electromagnetic behavior — they all share similar visual
output. Due to market demand, the emanation of the visual signal
has to cover a certain area and maintain a certain brightness level
to ensure clarity of picture, which also makes them susceptible to
compromising reflections. That said, these attacks require a view
of the screen, either directly or via reflections.

Also related within the domain of computer vision is the pro-
cess of image and video retrieval. Interested readers are referred
to Zhang and Rui [18], which presents an excellent review of im-
age retrieval techniques used to search through billions of images.
Likewise, Liu et al. [11] presents a survey of near-duplicated video
retrieval techniques that also focus on similarity of semantic con-

tent of the video sequences. In short, features are extracted to reveal
detail information in the image and semantic labels are used to pro-
vide a high level understanding. Unfortunately, we have no such
luxury in our application since we may have no visual access either
directly or indirectly to the screen, and must therefore find ways to
work with much more limited information.

Lastly, our application domain shares similarities to genome se-
quence matching and database searching. In particular, consider-
ing only the average image intensity signal, the task at hand can be
viewed as a sequence matching problem. For instance, in genome
sequence matching, Langmead et al. [10] present a fast DNA se-
quence matching scheme that exploits time and space trade-offs. In
database searching, Faloutsos et al. [5] and Moon et al. [12] present
methods that perform fast matching from an input subsequence to
those in a database. Unfortunately, these techniques suffer from
several limitations that make them ill-suited for our setting. For ex-
ample, in DNA sequence matching, many parts of a sequence may
be missing and so to find the best matches, dynamic optimization
methods are usually deployed to maximize the length of the best
match. These algorithms typically have O(mn) complexity, where
m is the length of the query sequence and n is the length of the
reference sequence. In our application, however, the only uncer-
tainty is the starting point of the query sequence and so much more
effective strategies (i.e., O(nlog(m)) or faster) can be applied.

In database searching, the problem is more similar to ours, but
the state-of-the-art solutions utilize Fourier transformation and fo-
cus on low frequencies. In our application, the sudden intensity
changes contain most of the information we utilize, but live in the
high end of the frequency spectrum. As such, these approaches
can not be directly applied. However, by combining many of the
strengths of prior works together with our own enhancements, we
provide a solution that boasts high accuracy and speed.

3. OVERVIEW
The key insight we leverage is that the observable emanations of

a display (e.g., a TV or monitor) during presentation of the viewing
content induces a distinctive flicker pattern that can be exploited
by an adversary. This pattern is observable in a wide range of sce-
narios, including from videos capturing the window of the room
housing the display, videos from cameras pointed at a wall in the
room but not at the TV directly, videos observing the watcher’s face
(for example, via a Kinect or similar front-mounted camera), and
of course, from video capturing the TV directly. To facilitate our
attack, we convert the observed pattern of intensity changes into a
suitable feature vector that is amenable to rapid matching of other
stored feature vectors within the adversary’s large corpus of pro-
cessed videos.

In this paper, we compute the average pixel brightness of each
frame in the video, resulting in a mean brightness signal for the
video. To capture the sharp changes in brightness, we then use the
gradient of the signal as the descriptor for the video. The overall
process is illustrated in Figure 1. Similar to the captured video,
every video in the adversary’s collection is represented by a fea-
ture based on the gradient of the brightness signal. Note that while
the mean brightness signal of the reference video and the captured
videos signal may vary, their gradient-based features share more
characteristics in common, and it is those commonalities that are
used to identify the content being watched.

4. BACKGROUND
The ability to confirm which video is being watched based off

compromising diffusions of changes in light hinges on several fac-
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Figure 1: The high-level workflow of our approach. Features are extracted from the captured video and then compared with features from reference videos in
a database. The reference video with the most similar feature is output as the most probable candidate.

tors including (i) the quality of the captured information (i.e., the
signal-to-noise ratio), (ii) the entropy of the observed information
(i.e., the amount of variation in the captured signal) (iii) the length
of the captured signal (e.g., short clips have more ambiguity), and
(iv) the amount of information required for successfully matching
the unknown and reference signals, which is related to the size of
the adversary’s reference library and the distinctiveness of its con-
tents. We discuss each in turn.

Noise Interference
For an arbitrary recording, our goal is to infer a signal, S, based on
effusions of light from the display. In practice, this means that we
also inadvertently capture an additive noise signal, N, which may
be composed of a variety of other signals (e.g., sensor noise, photon
noise). Consequently, the recording we capture is the composition
of the signal S and noise N. Intuitively, the more significant the
noise, the harder it will be to distinguish between the noise and
the signal. This correlation is measured by the signal-to-noise ratio
(SNR), which is the ratio of the signal variance σ2

S and the noise
variance σ2

N .
In general, the higher the SNR the less the noise influences the

resulting signal, which leads to more robust signal analysis. In the
case of capturing reflections of emanations, the SNR depends on
a multitude of factors. More specifically, the amount of light em-
anated from the screen at any frame depends on the intensity of the
video frame that is displayed on the screen, Ire f , the current bright-
ness level of the screen (measured by unit area emanation power
P0), and the size of the screen Sscreen. However, only a small frac-
tion of this light might be captured by the camera, the amount of
which depends on the distance the light travels from the screen to
the reflecting object, the size and reflectance of the reflecting ob-
ject, the aperture of the camera and the distance from the reflect-
ing object to the camera. The captured signal also depends on the
sensitivity αcam of the imaging sensor of the recording device. In
summary, assuming αcap is the percentage of emanation captured
by the camera, the recorded signal can be modeled as:

Icap = Ire f P0Sscreenαcapαcam (1)

It is important to note that αcap and αcam are not constant in prac-
tice because of the different reflectance properties for colors and
the non-linear color transformation of digital cameras [15]. Hence,
they will depend on the actual color composition of the displayed
video frame. Additionally, the intensity of light in the room influ-
ences the amount of incoming light and could be treated as another
signal, but for simplicity, we consider it an additive constant as long
as the lights are not being repeatedly turned on and off. As such,
we omit its embedded signal in Equation 1, but instead simply con-
sider it as a source of “impulse noise” [3], similar to the lights of a
passing vehicle.

To complicate matters even further, there can be noise from a
myriad of other sources that impact the measured brightness value
in the adversary’s recording of the emanations coming from the
display. These include quantization noise of the camera during the
A/D conversion to obtain pixel values [16], thermal noise from the
sensor itself [8] and impulse noise. Again, for simplicity, we ac-
cumulate the above noise factors into a single noise variable Inoise.
The SNR can then be computed as:

SNR =
σ(Icap)

2

σ(Inoise)2 (2)

where σ2(·) is the variance of the signal.
Intuitively, lower screen brightness levels, smaller and darker re-

flecting objects, and longer distances limit the amount screen light
captured by the adversary. Fortunately for the adversary, a high
quality camera can capture a good percentage of the incoming light
and reduce quantization and electronic noise. Finally, note that
while the intensity of a constant room light does not influence the
SNR directly—since it does not influence the noise variance—it in-
directly effects the quantization noise given that it affects the sen-
sitivity of camera’s sensor (i.e., higher room light intensity makes
the camera less able to capture subtle illumination changes).

For our experimental evaluations we can directly acquire Icap +
Inoise from the captured video. An estimate of the noise variance
σ(Inoise)

2 can be measured by having the adversary capture the re-
flection from a static image displayed on screen beforehand (e.g., at
her house). Similarly, room brightness can be approximated. With
these measurements at hand, Icap can be estimated with linear re-
gression using Ire f , and the SNR can be directly computed.

Takeaway. The factors that influence the signal we are interested
in can be approximated by Equation 1. Moreover, by using Equa-
tion 2, we can infer the SNR directly from the captured data, which
ranged from 5 to 107 in our empirical evaluations.

Point of Capture
Obviously, the point at which the recording of the light diffusions
is taken can influence how well the attacker can confirm her hy-
potheses. Intuitively, the more she is able to record sudden inten-
sity changes, the higher the chances are that the correct content will
be inferred. A key challenge for the adversary is that the average
intensity of one frame is highly dependent on that of the previous
frame. For instance, in our empirical evaluations, nearly 95% of
consecutive frames have the same average intensity (up to round-
ing error precision).

To improve our ability to carry out the attack, we do not use
the raw data directly, but instead, use its gradient to reduce the
correlation. To see why that helps, assume that xt = Ire f (t + 1)−
Ire f (t),yt = Icap(t +1)− Icap(t), t = 1,2,3, .... Then, given that the
vast majority (i.e., 95%) of the average intensities are similar, this
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means that 95% of the xs would be 0. Assuming the gradients are
independent of one another, the information with a particular frame
sequence {xt , t = 0,1,2,3, ...} can be measured as:

In f ore f (x) =−Σ
N
t=0log( f (xt)∆x) (3)

where f (xt) is the probability density function (PDF) of xt in a
single frame. In f ore f (x) can be viewed as the logarithm of the
inverse probability of the reference sequence. The higher its value,
the less likely another reference sequence will "accidentally" be
the same as it, which means that the sequence has less ambiguity
and contains more information. Consequently, the more intensity
changes the adversary observes, the more likely it is that the correct
content will be inferred.

To gauge how well the attack should work, we can compute the
mutual information between x and y using Equation 4. In f omutual(x,y)
estimates the information captured by the adversary on average.

In f omutual(x,y) =
∫

p(x)p(y|x)log(
p(y|x)
p(y)

) (4)

In practice, p(x) can be observed directly from a reference video.
Likewise, p(y) can be computed by ignoring impact noises (which
are rare) and assuming that the noise follows a Gaussian distribu-
tion. In fact, since Ire f and Icap are linearly related, we can also
assume y = x+noise, where Var{noise}=Var{x}/SNR. In doing
so, we can now compute the mutual information with the SNR we
acquired. For context, we note that in our evaluations that follow at
an SNR of 5 every frame conveyed roughly 1.5 bits of information.
Under much better conditions with SNR of 107 (observed when the
diffusions were captured while the victim watched an action scene
on a 50-inch TV) every frame conveyed 3.2 bits of information.

Takeaway. The above analysis tells us what one would expect:
the more intensity changes observed, the less the resulting ambigu-
ity. Therefore, if the adversary is lucky enough to observe several
sharp changes in intensity, she will have an easier time to identify
the content being watched by the victim. Not surprisingly, Equation
4 also tells us that bigger and brighter screens provide more than
twice as much information (compared to the smaller and darker
ones used in our experiments).

Length of Recording
Given the previous discussions, longer recordings are obviously
better for the adversary. To see that, assume that the arrival of in-
tensity changes are Markov, meaning that the distribution of arrival
time and magnitude of the next intensity change only depends on
the current state of the video being watched. If that is the case, then
the information learned by the adversary is linearly related to the
mutual information per frame. Ideally, the attacker’s best hope is
for a high SNR environment, a good starting point, and a suitable
recording length capturing multiple changes in intensity.

Size of the Reference Library
The last factor that affects the speed and accuracy of the attack
is the size of the reference collection the adversary must test her
hypotheses against. In the worst case, the amount of information
we need to uniquely identify a video is logarithmic with its total
length, which in turn, is linearly related to the size of the attacker’s
library. Therefore, linearly increasing the size of the library will
only have marginal influence on her ability to successfully confirm
which content the victim is watching.

5. AUTOMATED VIDEO RETRIEVAL
Our approach (as shown in Figure 1) consists of two main parts

that comprise a feature extraction step from the captured recording
and a video retrieval step using a precomputed library of features
from reference content (i.e., the set of videos for which the adver-
sary wishes to confirm her hypotheses against). The feature ex-
traction stage converts the captured video into a representative en-
coding that encodes the changes in brightness. This feature is then
compared during the video retrieval to the features in the database
to identify the content on the victim’s display.

5.1 Feature Extraction
Intuitively, in our feature representation we want to preserve the

brightness changes of the displayed image. Hence, for each frame t
of the video, with M frames, we calculate the average intensity s(t)
with t = 0, . . . ,M, by averaging all the brightness values of all pixels
in the image. The sequence s of these average brightness values
s(t) with t = 0, . . . ,M, provides us with a coarse characterization of
the captured video’s brightness. An example brightness sequence
for a video sc captured through the window and the corresponding
original video sd is provided in Figure 2. Notice that while the
variation of the two signals is comparable, the magnitude of the
brightness signals s(t) is significantly different.

Figure 2: The intensity signal (top) and respective features (middle and bot-
tom). For illustrative purposes, the sequences are manually aligned. Noises
occur as peaks or masked out peaks in the feature sequence

To achieve comparability of the two signals sc and sd we charac-
terize them by their frame-wise intensity gradient over time ds(t).
Given the average intensity signals sc and sr respectively, the tem-
poral gradient ds(t) can be calculated as ds(t) = s(t +1)− s(t).

Based on our conjecture that the brightness changes uniquely
characterize a video, we convert the temporal gradient ds into a
feature f by only preserving its significant (|ds(t)|> 1) local max-
ima and minima
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f (t) =


ds(t), i f |ds(t)|> 1∧|ds(t)|> |ds(t−1)|

∧|ds(t)|> |ds(t +1)|
0,else

(5)

If the video sequence’s brightness does not have scene changes,
flashes or other sudden changes, the average intensity is nearly con-
stant, leading to zero values in f (t). By contrast, if there is a sud-
den intensity change (e.g., a drastic scene change or flashes of gun
shots) f (t) will capture a "peak" which is either positive or nega-
tive, representing a sudden increase or decrease in average inten-
sity. Accordingly, f (t) can be viewed as a composition of peaks.
For a captured video, some of the peaks might correspond to noise
or noise might mask some peaks in f . Additionally, the magnitude
of the peaks might be still scaled by an unknown factor. Example
features fc and fd for a captured video and the retrieved database
video are shown in Figure 2 (middle, bottom).

5.2 Creating the Reference Library
Our video retrieval requires a database of reference videos to

retrieve the corresponding video being watched. This database is
typically obtained ahead of time by obtaining all content of interest.
If only the content for live TV is of interest to the adversary, she can
just record all the currently running TV channels. If the adversary is
interested in online videos, a database of popular videos (e.g., from
YouTube, Netflix, or her home collection) would be helpful. Once
all videos of interest are obtained, they are converted to feature
vectors using the same feature extraction technique used for the
captured sequences (see Section 5.1).

5.3 Locating the Best Matching Sequences
To identify the best match we use a nearest neighbor search

across subsequences because the captured sequence typically only
covers a small part of the overall content being watched on the dis-
play. For ease of exposition, we first introduce our similarity metric
for the case that both the captured length length( fc) and the refer-
ence video length length( f ) are the same and start at the same time.
Later, we generalize the metric to account for different lengths and
starting points of the captured and the reference videos.

Intuitively, to measure the similarity of the feature vectors for the
captured video fc and a reference video fi ∈ { fre f }, we can exam-
ine how many extrema match between the features. The amount of
disturbance caused by erroneous noise peaks is represented by

Enoise( fi, fc) =
ΣL

t=1 fc(t)21( fi(t) == 0)
ΣL

t=1 fc(t)2 (6)

where L is the length of the videos and 1(x) is the indicator func-
tion, which is one if x is true and zero otherwise. Similarly

Emiss( fi, fc) =
ΣL

t=1 fi(t)21( fc(t) == 0)
ΣL

t=1 fi(t)2 (7)

measures the energy of missing peaks in the reference sequence.
Note that while Enoise and Emiss characterize the magnitude of dif-
ference in the number of peaks, we must also measure the amount
of difference in energy of the peaks by characterizing how similar
the extrema themselves are. This can be measured as the correla-
tion Corr( fi, fc)

Corr( fi, fc) =
ΣL

t=1 fc(t) fi(t)√
(ΣL

t=1 fc(t)2)(ΣL
t=1 fi(t)2)

(8)

between the two sequences, which has a value between -1 and 1. In
this paper, we use a similarity metric d that combines Enoise, Emiss
and Corr( fi, fc) into a single metric:

d( fc, fi) =α (Enoise( fi, fc)+Emiss( fi, fc))

+(1−Corr( fi, fc))
(9)

with α representing the weighting between the energy of the miss-
ing or noise peaks and the correlation between the correct extrema;
the latter is necessary when distinguishing features in the case of
perfectly agreeing peaks. Given that the magnitudes of the peaks
may be different between the captured and reference signals, we
rely on the temporal information which is more accurate. As such,
we empirically chose α = 50 for all our experiments so that the
temporal agreement of peaks dominates the metric. It is only when
the temporal position of peaks matches perfectly that Corr( fi, fc)
is used to evaluate their similarity based on magnitude.

Returning to §2, it is important to remind the reader that our met-
ric is based on the gradient of average intensity. Therefore, it cap-
tures sharp intensity changes and ignores smooth terms such as am-
bient light condition, the auto exposure of camera and other gradual
changes. Even impulse noise (e.g. turning on/off the room light)
only result in a single extra peak in the feature vector and thus has
minor impact on the overall result. Other alternatives such as using
the correlation directly (e.g., as proposed by Greveler et al. [7]) fail
in our scenario since these approaches are significantly impacted
by signal magnitudes which are often heavily distorted. Likewise,
the FFT transformation used in sequence matching schemes [5, 12]
also fails because the peaks are too sparse for frequency analysis
and the localized changes are too subtle to be useful.

In our evaluations that follow, the reference video that best matches
under our similarity metric d is reported as the likely content be-
ing watched. We note that in practice the temporal position of the
extrema may vary by one frame due to encoding and sampling of
the original video sequence. Therefore, when determining whether
fi(t) or fc(t) is non-zero, we consider the adjacent two frames
(t − 1, t + 1) in addition to the frame at time t by using the mod-
ified indicator function 1̃(x) in Equations (6)-(9), which is one if
none of x or its temporal neighbors is true.

Notice that thus far, the retrieval using the similarity metric d
from Equation (9) assumes equal length and starting point of the
videos. To relax this assumption, for a recording of length lc =
length( fc) we search all subsequences of length lc among all database
sequences of length greater than or equal to lc. This has the added
benefit that we not only identify what content was watched, but
also what part of the video was watched at the time the recording
was taken. The problem, however, is this type of exhaustive search
comes with a significant computational burden. In what follows,
we discuss how to achieve a more efficient solution in practice.

6. ILLUMINATI: EFFICIENT ATTACKS
US-ING COMPROMISING EFFUSIONS

To tackle large-scale databases of tens of thousands of videos, we
employ a matching algorithm that only needs to search a small frac-
tion of the database. Recall that our similarity metric (Equation 9)
mainly matches significant intensity changes (peaks in our feature
representation) in the captured video with the peaks in the database
videos. Next, we leverage the fact that these peaks are only present
in a small fraction of the video frames and propose a new peak-
feature that efficiently characterizes the distribution of peaks. This
distribution can then be used to narrow down the search space and
speed up the search by an order of magnitude. Our proposed al-
gorithm consists of two steps. The first step is the extraction of

422



the features based on only the peaks and the second step uses an
efficient index-based search.

6.1 Peak-feature Extraction
Our proposed peak-feature aims at capturing the distribution of

the peaks caused by sudden intensity changes in the video. As
shown in Figure 3, the peak-feature is computed within a sliding
window, of size w = 512, over the gradient feature, i.e. the peak-
feature is computed from the w consecutive feature values. The
value 512 is chosen empirically since our experiments indicate that
subsequences shorter than 512 frames (at 10 Hz video frame rate)
do not provide enough information for retrieval. To limit sensitivity
to peaks caused by noise, all peaks with a magnitude lower than
a predefined threshold (30% in our experiments) of the strongest
peak’s magnitude are omitted. The remaining dominant peaks are
assumed to stably represent the gradient feature within the window
and are encoded into our proposed peak-feature.

Figure 3: Depiction of a sliding window for extracting the peak-descriptor.
To suppress noise related peaks, peaks below a predefined threshold are
ignored. Effective peaks pairs create a histogram and the cumulation is
used as the descriptor of the window.

The encoding scheme works as follows. A histogram of the pair-
wise distances between all pairs of peaks is computed. The his-
togram uses a bin size of eight, which roughly corresponds to a one
second distance quantization. The resulting histogram has 64 bins
for our window size of 512 frames. Each pair of peaks increases the
count in the bin corresponding to their distance (measured by their
frame number difference). To model the fact that the stronger peaks
are more reliable, the amount of increase is equal to the product of
the peaks magnitude. In that way, peaks with larger magnitudes
contribute more significantly to the histogram. To ensure compa-
rability between feature windows with different numbers of peaks,
we normalize the histogram to sum to one. Our peak-feature is the
cumulative histogram of the normalized histogram. For the remain-
der of the paper, we use this cumulative histogram as it is less prone
to the influence of noise caused, for example, by the quantization
through the histogram bins.

In summary, our proposed peak-feature is a monotonically in-
creasing 64-dimensional vector with the final element being 1. An
example histogram and the corresponding peak-feature is illustrated
in Figure 3. The distance between two peak-features can be mea-
sured by the Euclidean distance of the 64 dimensional vectors. The
peak-feature is invariant to the starting point of the window given
that it only encodes the pairwise peak distances. When the window
slides across the feature, the peak-feature remains stable as long
as there is no peak coming in or going out. For completeness, the
exact process is given in Algorithm 1.

An entire video can then be represented as the set of its peak-
features, which typically leads to a large set of features describing
the video. However, since the peak-feature only depends on the
peaks within the window, shifting the window by one frame often
results in the same peak-feature (as long as all peaks remain in the
window). Empirically, this is the case for about 95% of the peak-
features. Accordingly, we represent a video using only its unique
peak-features and remove all redundant peak-features from the set
of computed peak-features.

Algorithm 1 Extracting peak-feature from window fwin

1: T hreshold← 0.3
2: for i = 1 to N do
3: if | fwin[i]|< T hreshold ∗max(| fwin|) then
4: fwin[i]← 0
5: end if
6: end for
7: for i = 1 to 64 do
8: Histogram[i]← 0
9: end for

10: for every 2 peaks pi, p j in fwin do
11: Histogram[dist(pi, p j)]← Histogram[dist(pi, p j)]+ |pi p j|
12: end for
13: Histogram← Histogram/sum(Histogram)
14: for i = 1 to 64 do
15: PeakFeature[i] = Σi

k=1Histogram[k]
16: end for
17: return PeakFeature

6.2 Efficient Searching
Next, we detail our proposed efficient search algorithm, which

leverages the introduced peak-feature for efficient search. Algo-
rithm 2 provides the pseudo-code for our method and will be de-
tailed below. Given a recording of interest, we first extract the
peak-features for the video (see line 6). Peak features with a high
number of strong peaks are typically very distinguishing, having
a Euclidian norm that is typically larger than peak-features with
weaker or fewer peaks. During the matching process, we select the
peak-feature with the largest norm first (see line 7).

To search the database for a likely match (see line 9), we index
the peak-features using a data-structure known as K-d tree, which
is widely used for search in high-dimensional search spaces [2].
The main idea of the K-d tree is to recursively split the space with
hyperplanes, which iteratively refines the possible location of the
data point under examination. In our empirical evaluations, the
reference library contains 27-million peak-features representing the
54,000 videos. By leveraging a K-d-tree, we can quickly search for
all reference videos that are likely matches. Here, a likely matching
video has to be within a Euclidean distance of δ ≤ 0.7 from the
peak-feature of the captured video2.

From the likely matches we select the one with the smallest Eu-
clidian distance to the captured video (see line 10). For this video
our similarity metric from Equation 9 is computed. If the similarity
is the best observed similarity thus far, this video is retained as the
top candidate and its confidence is increased (see line 16). Then,
the next strongest peak-feature is obtained (see line 18) and eval-
uated in the same manner (see line 9-16). If the retrieved video is
the same as the previously selected one, the confidence assigned to
this potential match increases (see line 16). Otherwise the newly

2The value for δ was empirically chosen based on a rudimentary
analysis of the resulting accuracy.
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found best match replaces the previously selected best video (see
line 12-14). This process is repeated until the best-matching video
remains stable for three consecutive trials.

Algorithm 2 Efficient searching captured feature fc
1: BestScore← INF // best so far score
2: BestId← INF // database id of best candidate
3: ConsecutiveHits← 0 // number of consecutive confirmation of

best candidate
4: MaxHits← 3
5: Radius← 0.7
6: PeakFeature← extractPeakFeature( fc)
7: CurFea← f eatureO f StrongestPeak(PeakFeature)
8: while exist(CurFea) and ConsecutiveHits < MaxHits do
9: Re f Fea← searchKdtree(CurFea,Kdtree,Radius)

10: [CurScore,CurId]← f indMinSMetric(CurFea,Re f Fea)
11: if CurScore < BestScore then
12: BestScore←CurScore
13: BestId←CurId
14: ConsecutiveHits← 0
15: else
16: ConsecutiveHits←ConsecutiveHits+1
17: end if
18: CurFea← f eatureO f NextStrongestPeak(PeakFeature)
19: end while
20: return BestId

The algorithm proposed above is an offline approach, which can
be extended to operate in an online fashion. For offline retrieval,
we have access to all the peak-features at once. Hence, we have the
luxury of ranking the features by strength. In contrast, for online
operation, the video is streamed. Once a new frame is captured a
new peak-feature is computed using the 512 most recent frames.
If the newly computed feature is unique for the video, i.e., has not
been extracted from the video before, the K-d tree is used to search
for likely matches within the reference library. Then the best video
(i.e., with the smallest Euclidian distance) is fully evaluated us-
ing our proposed similarity metric from Equation (9). If the best
video is identical to the previously identified one, its confidence is
increased. Otherwise it replaces the current best choice.

On Efficiency: Levering the peak-features and the K-d tree based
search reduces the search time on average to less than 10s (2.8 sec-
onds for each K-d tree search) for a database of 54,000 reference
videos. The achieved query time is more than an order of magni-
tude faster than searching exhaustively through the database, which
took 188s. The online search can in fact be executed in real time
when allowing a latency of 512 frames due to the required tempo-
rally preceding information for the peak-feature computation.

7. EVALUATION
For our empirical evaluation, we collected a large collection of

reference videos spanning a wide variety of content. Our refer-
ence library contains 10,000 blockbuster movies of at least an hour
in length, 24,000 news clips ranging from 5 min to 20 min each,
10,000 music videos ranging from 2 min to 7 min each, and 10,000
TV-shows ranging from 5 min to 20 min each. In total, the library
indexes over 18,800 hours of video. All features and peak-features
from the library are precomputed by leveraging our proposed meth-
ods from Sections 5 and 6. For our experimental evaluation we
randomly selected 62 sequences as our test set of videos.

For the first set of evaluations the test videos were played on a
24 inch screen with no additional room lighting turned on. We then

capture the reflection of the screen emanation from a white wall at
a distance of three meters from the screen. To capture the video,
a Logitech HD Pro Webcam C920 and a 60D canon DSLR were
used. We run the experiment in a home environment as well as
in a lab environment. The setting of our experiment is illustrated
in Figure 4. These captured videos were then used to execute our
attack. For these evaluations we assess the success of the attack
with respect to the duration of the captured video and the size of
the reference library.

Figure 4: Lab environment (left) and home environment setting (right)

Lights Off
First we evaluate the success rate of our method using a room with
the lights off, as commonly occurs when watching TV. A success
is the correct identification of the video being watched. We do not
leverage any knowledge about the video being played nor do any
of our experiments use any knowledge of the scene or the capture
distances. The time at which the adversary starts capturing the em-
anations from the display is chosen at random.

Capture Length 60s 90s 120s 180s 240s 270s
Success Rate 39% 49% 54% 70% 85% 94 %

Table 1: Retrieval success rate with random start point.

For the 62 test sequences we analyzed segments from 60 to 270
seconds long. These segments are processed by the feature and
peak-feature extraction procedures. The resulting features and peak-
features are then used to infer the best match among the reference
library. The experiment is repeated 100 times for each of the differ-
ent segment lengths, each time choosing a random starting position.
Table 1 shows the resulting average success rate over all starting po-
sitions. As expected, the longer the captured sequence, the higher
the attack’s success rate. The results shows that the success rate
increases from 39% for a 60 second segment to 94% for 270 sec-
onds, and has nearly a 50% success rate using only 90 seconds of
captured emanations. A more detailed analysis of the data reveals
that in the limit, the success rate is 100% for each video as subse-
quences within these videos can always be uniquely identified.

To better quantify the robustness of our approach, we evaluate
the ratio in similarity between the video sequence returned as the
best match and the true positive. If the ratio is larger than one,
that implies the correct video will always be identified. The higher
that ratio, the more distinct the retrieval result. Obviously, the out-
come also depends on the contents of the reference library itself.
The experimental results of the ratio evaluation are shown in Fig-
ure 5. The median similarity score ratio rises above one (successful
retrieval) between 100 and 120 seconds. For longer sequences, it
monotonically increases with increasing segment length.

Beyond the average success rate and robustness, it is also impor-
tant to understand the best and worst case results. The worst case is
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Figure 5: The median ratio within the dataset of 54,000 references.

Figure 6: Rank of correct video in the best case (blue) and worst case (red).

especially useful since it provides a measurement for an attacker of
how much video is needed to reliably achieve a successful attack.
To measure these boundaries we evaluate the retrieval success rates
for all possible sub-sequences longer than 10 seconds and all possi-
ble starting points for our 62 test sequences. For each of these tests
we then rank the retrieved videos by their similarity scores and re-
port the rank of the ground-truth video. If the corresponding video
is ranked first the retrieval was successful, otherwise it was not.

Figure 6 shows the rank of the corresponding video with respect
to the captured video’s length for one of our test videos. The re-
sults for the other videos are comparable. In the best case, the
corresponding reference video is always ranked first, which means
if the attacker is lucky enough, she will be able to retrieve the cor-
rect video even if she only captures 10 seconds of video. The re-
sults also shows that any captured segment longer than 120 seconds
within this particular video can always be successfully retrieved.

Next, we summarize the results on a per-video basis by assign-
ing a video its worst segment’s similarity ranking, i.e., its worst
possible ranking obtained by any of the corresponding video for
any of its segments. This captures the lower bound of the attacks
performance for each of our 62 test videos. The results are shown
in Figure 10. Expectedly, the variation is the largest for the short-
est segments of less than 100 seconds and converges to one with
capture length longer than 240 seconds.

7.1 Lights On
The illumination of a scene (e.g., both room and natural light)

contribute significantly to the amount of light entering the camera,
which in turn influences the brightness level of the captured video.
Obviously, screens with lower brightness naturally reduce the light
emanation. Therefore, we evaluate the influence of the illumination

Illumination settings SNR Segment Length
Normal brightness level room light off 70 180s

50% brightness level room light off 33 270s
Normal brightness level room light on 15 300s

Table 2: Worst case capture length with different illumination settings.

on the performance of our proposed attack. In this experiment we
use a 24 inch screen, and the attacker’s camera captures the reflec-
tion of the screen of a white wall, which is three meters away from
the screen. The camera used in the attack is a Canon Rebel T4i
DSLR. We captured five videos in each of three different illumina-
tion settings: 1) normal screen brightness with room light off, 2)
50% reduced screen brightness level with room light off, 3) normal
screen brightness with the room light on. The obtained retrieval
results are shown in Table 2 and Figure 7.

Figure 7: Ratio to second-best under different illumination conditions.

The results indicate that higher screen brightness levels make
the retrieval slightly more successful as it takes shorter segment
lengths for successful retrieval and the similarity ratio is higher.
However, the influence of the screen brightness seems marginal. It
can also be seen from Table 2 and Figure 7 that even with the room
light on, our attack is successful with moderate segment length,
which we attribute that to our robust similarity metric. The only
effect that both the lower screen brightness and the active room
light have is that it mandates that longer segments are necessary for
successful retrieval in the worst case. This is expected, as in both
cases, smaller, less significant brightness changes are not detectable
anymore. Accordingly, there are fewer distinguishing elements we
can use. In the case of the active room light, we only failed once
when retrieving a video based on a segment that was 270 seconds,
but succeeded with a 300 second segment. It is worth noting that
in the case of an active room light, a human observer is not able to
perceive the resulting subtle intensity changes on the wall.

7.2 Impact of Screen Size
The amount of light captured by a camera not only depends on

the screen’s illumination setting but also on the actual screen size as
it influences the amount of light emitted into the environment. Gen-
erally, bigger screens emanate more light, which leads to higher
quality video capture. To evaluate the impact of screen size, we
performed an experiment in which we used differently sized LCD
displays. In particular, we used displays with 24 inch, 30 inch, and
50 inch screen sizes. We again use a Canon Rebel T4i DSLR to
capture the video of the back wall, which is 3 m away from the
screen. For each screen size we capture five videos. The result-
ing required worst case segment lengths for successful retrieval are
shown in Table 3 while Figure 8 shows their distribution. The SNR
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Figure 8: Boxplot of the second-best ratio w.r.t. different screen sizes.

is lower because the experiment was performed in a different room
with a lot of light-absorbing materials.

Screen Size SNR Worst Case Length
24 inch 5 270s
30 inch 48 180s
50 inch 109 180s

Table 3: Worst case capture length with different screen size.

Expectedly, the larger screen size supports better retrieval for
shorter segments. The shorter segments that fail on the 24 inch
screen can often be successfully retrieved with the 30 and the 50
inch screens. The similarity ratio is higher on larger screens leading
to more robust identification.

7.3 Impact of Reference Library Size

Figure 9: Rank of correct video among libraries of size 1,000 and 4,000.

The retrieval results are influenced by the distribution of the videos
within the database and the size of the database. To characterize the
change in behavior we compute the worst case ranking for two ref-
erence libraries consisting of 1000 and 4000 videos respectively.

The results are shown in Figure 9. As expected, it can be seen
that the larger the database, the longer the segments have to be to
guarantee a successful retrieval. However, the increase in segment
length with respect to the increase in database size is moderate.
For example, for an increase in database size from 4,000 to 54,000
videos (13.5x), the segment length only increases by 20% (from
approximately 200 seconds to 240 seconds). We predict that this
increase will decline even more for larger databases as the proba-
bility of two identical video segments appearing in different videos
exponentially decreases with the length of the segment.

Figure 10: Rank of correct video (among 54,000 videos).

7.4 As Seen From Outdoors

Figure 11: TV reflection in the room is captured from a distance of 13.5
meters (left). The worst case results (right) are illustrated for different types
of videos: TV shows, music and film from top to bottom. All segments
longer than 180s were successfully retrieved.

To further demonstrate the practicality of our proposed attack,
we tested its effectiveness from outdoors. We captured the ema-
nations seem on an outside window of a room with a TV showing
60 of our test sequences. In this scenario, the attacker was posi-
tioned on the sidewalk observing the third floor office window of
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the room with the TV (see Figure 11). The TV emanations re-
flected off the beige ceiling of the room and towards the window
which was situated orthogonal to the TV. The TV is 13.5 meters
away from the adversary. For completeness, we evaluated our ap-
proach using videos from varying categories of media that include
TV shows, music videos and films. 20 samples of each video type
were captured. Figure 11 (right) shows the worst case result with
respect to different subsequences. The results indicate similar suc-
cess across all videos tested, and in all cases, we were able to per-
form the confirmation attack.

To guage the robustness of our approach, we further experimented
with recordings captured at much further distances. In this case,
the attacker was positioned on the sidewalk 70.9 meters from the
building; the TV was playing in the same third-floor room as in
the previous experiment. TV emanations were captured from the
ceiling reflection with the same Canon Camrecorder. 20 sequences
randomly selected from different categories are tested. The pro-
posed approach successfully retrieved 18 sequences out of them
within 5 minutes. The experimental setting and results are depicted
in Figure 12. The results are compared with that of direct view and
13.5 meter reflection (Figure 12 bottom). In the worst case, the se-
quence can usually be retrieved within 100 seconds at 13.5 meters
away, compared to 190 seconds, on average, from 70 meters away.

Figure 12: TV reflection in the room is captured from a distance of 70.9
meters(top). The camera and the window are labelled in red(top right). The
required capture length is compared with direct view and 13.5 meter reflec-
tion (bottom). It takes longer for successful retrieval with longer distance.

8. MITIGATIONS
The simplest mitigation is to cover the windows of the room with

blackout curtains to effectively avoid the leakage of the light to the
outside. To guage the effectiveness of such a defense we performed
a rudimentary experiment with vinyl blinds and curtains (see Figure
13)3. The setup was the same as for the attack carried out at 13.5
meters outdoors, except for the use of shades. In this experiment,
only two samples were tested in each case. For the case of vinyl
blinds and a standard beige curtain with brown stripes, we were still
able to determine 3 of the 4 videos being watched after capturing
3The brighter pattern in the middle picture is caused by a reflection
on the vinyl blinds from an outside street lamp.

270s worth of footage. The other video failed to be recovered even
after 5 mins. We were unable to confirm any of the watched content
when thicker, room darkening, (black) curtains were used.

Figure 13: Captured image directly from window (left), through vinyl
blinds (middle) and through a curtain (right).

If the use of curtains is not desired the screen brightness could
be lowered to increase the SNR of any captured video. Our experi-
mental evaluation demonstrated though that this has only a limited
effect on twarting the attack. Our experiments show that retrieval
will still be possible as long as the brightness change is perceptible.
Although this strategy would not prevent the attack altogether, low-
ering the screen brightness will increase the burden on the attacker
as longer observations would be required to successfully carry out
the attack. Similarly, the burden on the attacker can be increased if
a bright room light is used as that would increase the noise level in
the captured signal.

Another defensive strategy may be to install a flood light next
to any window of the room so as to effectively blind a camera that
tries to observe the diffusions through the window. Doing so would
prevent the camera from capturing the subtle brightness changes
required to successfully execute the attack. That said, a motivated
attacker could overcome this defense by using sophisticated high
dynamic range image cameras, which can capture a large dynamic
range of light intensities. Alternatively, our attack could be mit-
igated by installing an adaptive lighting system, which measures
the emitted light and counters any brightness change of the emit-
ted light. Doing so would help maintain a constant amount of light
emission and would not reveal the brightness change information to
an outside observer. Obviously, these defenses would not be popu-
lar in densely populated areas as the outdoor light emissions would
likely not be appreciated by neighbors.

9. CONCLUSIONS
We propose a novel method to identify the video content shown

on a victim’s screen using recordings collected in a number of
practical scenarios (e.g., observations of light effusions through
the windows or off the walls) and at great distances (e.g., 70m
away). Our attack shows reliable identification of the content being
watched in a wide range of evaluated scenarios. The robustness of
the attack is due to a novel application of unique feature sets, a well
suited similarity metric, and the development of efficient index-
ing structures for performing rapid matches in near real-time. Our
empirical results show that we can successfully confirm hypothe-
ses while capturing short recordings (typically less than 4 minutes
long) of the changes in brightness from the victim’s display.
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